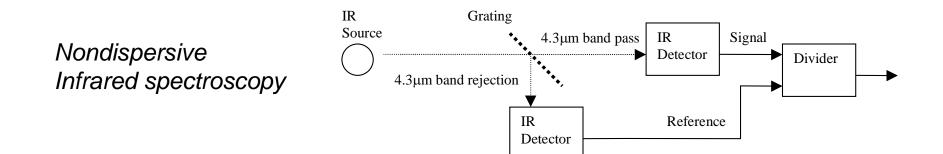
Technological advances within the field of micro multisensors: A Nordic perspective

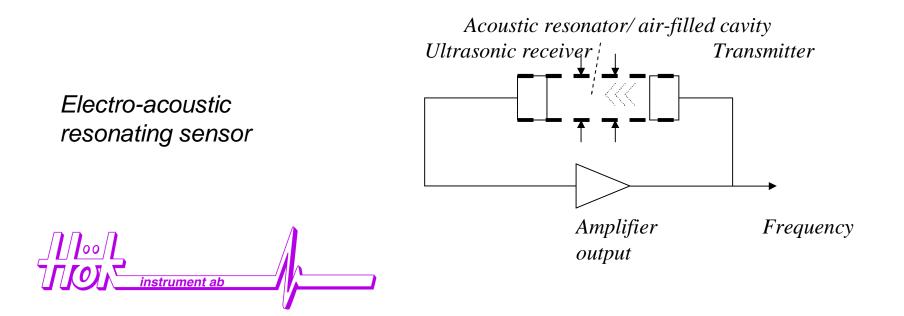
"IAQ Sensors – a quick Nordic overview", Bertil Hök, Hök Instrument AB (<u>www.hokinstrument.se</u>)

"MASCOT: Micro-acoustic sensors for CO2 tracking", Per G. Gløersen, SensoNor AS (<u>www.sensonor.com</u>)

"Future Nordic Sensors" Niels Peter Østbø, SINTEF (<u>www.sintef.no</u>)

IAQ (indoor air quality) sensors - a quick Nordic overview


Bertil Hök HÖK INSTRUMENT AB


III ooII IIII Instrument ab

IAQ monitoring & control variables

- Temperature
- Relative humidity
- Carbon dioxide concentration
- Particles, microorganisms (pollen...)
- Volatile Organic Compounds (VOC)
- Other gases (NO_x, ozone, ...)

CO₂ sensor principles

SenseAir infrared IAQ sensors

Housing for industrial environments

 $\rm CO_2$ sensor for embedded solutions

/ 00 instrument ab

Electro-acoustic IAQ sensor

instrument ab

Nordic IAQ sensor suppliers

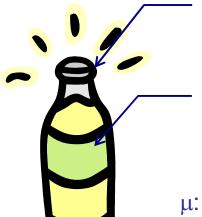
- kT Sensors, Norway, ktsensor.no
- Optosense, Norway, optosense.com
- Vaisala, Finland, vaisala.fi
- SenseAir, Sweden, senseair.se
- Hök Instrument AB, Sweden, hokinstrument.se

MASCOT: Micro-Acoustic Sensors for CO_2 Tracking

Per Gerhard Gløersen, SensoNor AS Bertil Hök, Hök Instrument AB Niels Peter Østbø, SINTEF

The MASCOT project was cofinanced by the IST programme of the European Commission under grant number IST-2001-32411

An Infineon Technologies Company


Device modelling basics

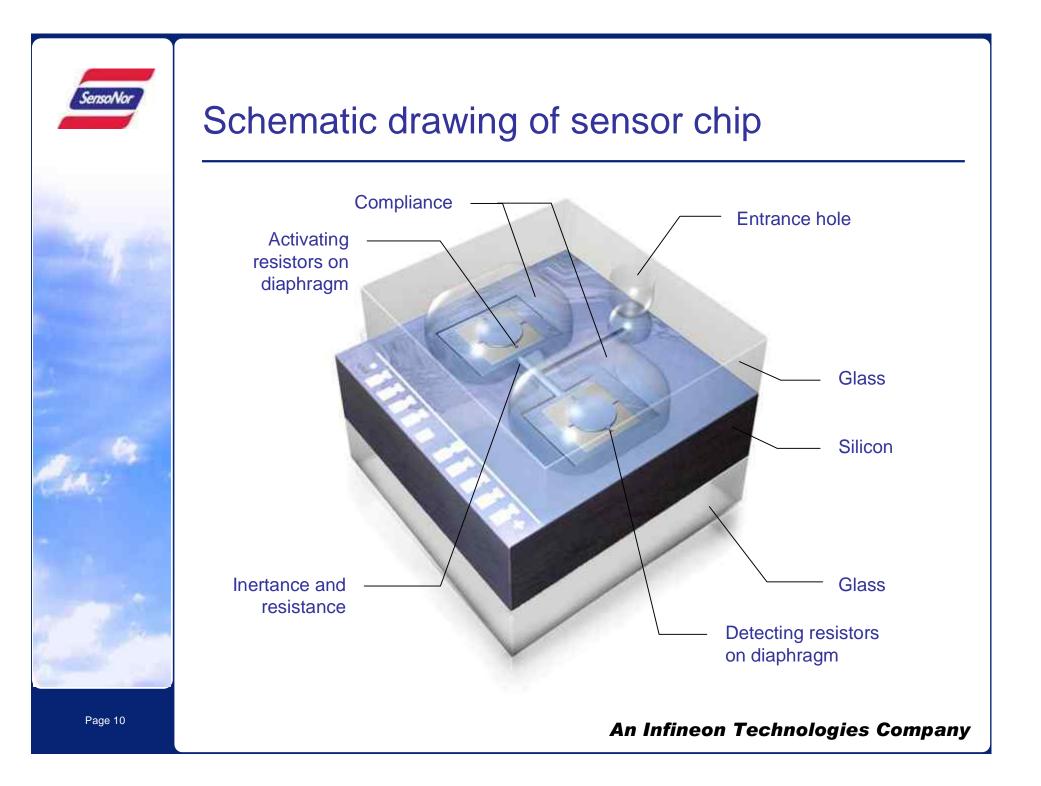
Relationship between velocity of sound c and molecular mass M of a gas:

$$c = \sqrt{\frac{RT\gamma}{M}}$$

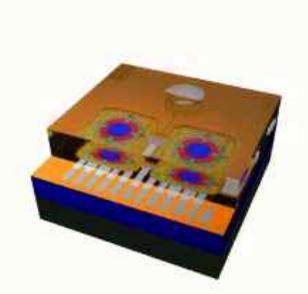
R: universal gas constant (=8.314 J/mol K),
T: absolute temperature (K)
γ: Ratio of specific heat at constant pressure and volume

Resonant frequency and Q of a Helmholtz resonator:

Neck effective length *l* and area A (radius a)

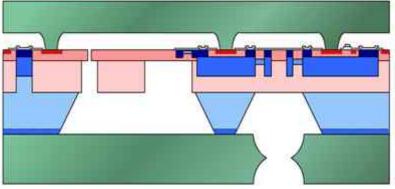

$$f_r = \frac{c}{2\pi} \sqrt{\frac{A}{\ell \cdot V}}$$

Compliant gas volume V


 $\boldsymbol{\mu}\!\!:$ kinematic viscosity of gas

An Infineon Technologies Company

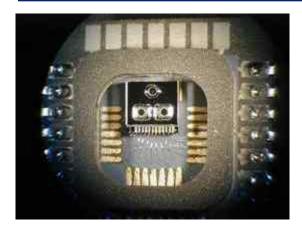
MASCOT in operation


An Infineon Technologies Company

Page 11

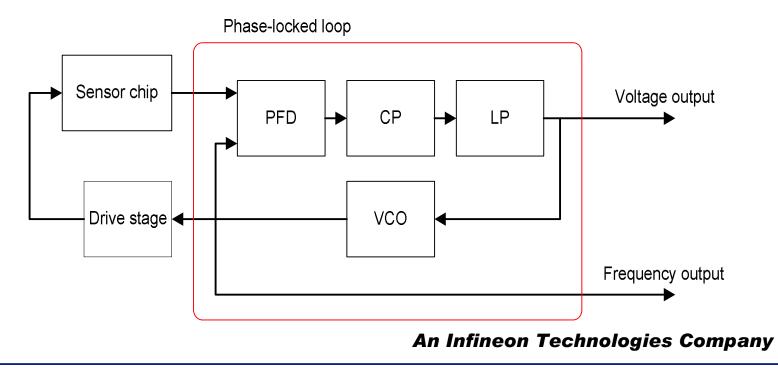
Features of MEMS process

- Buried piezoresistors for precise and stable transduction of stress signals
- Sealed cavities for reference pressures
- Microchannels for gas / liquid flow
- Controlled 3D features for micromachined MEMS elements such as masses, beams, channels, springs and diaphragms
- Materials compatible with a large range of media / environments
- Wafer-level package provides stable enclosure and environmental protection for the sensor chip
- SensoNor's process platform is QS 9000 certified for automotive high-volume sensor production.

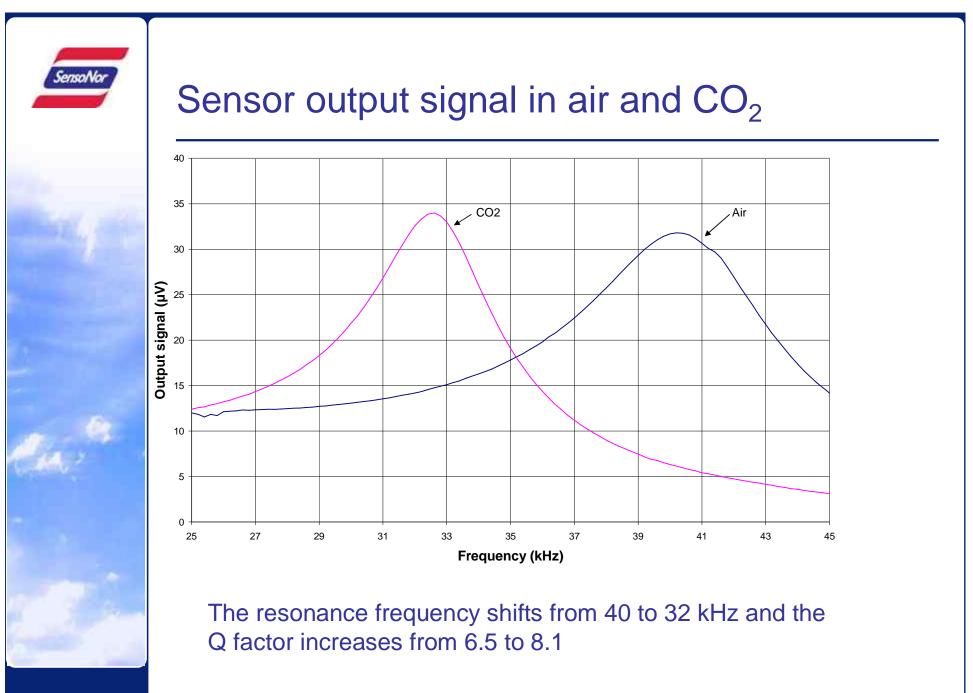


An Infineon Technologies Company

Page 12



Packaged prototype and system solution



A large variety of sensors were produced with a range of characteristic dimensions

Sensor chip area: 3 x 3 mm. Packaged in a standard ceramic package

Page 13

An Infineon Technologies Company

Sensor characteristics

	f _r	Q
Typical value	40250 Hz	6.60
CO ₂	-11 Hz/1000ppm	+0.009/1000ppm
RH	+4 Hz/%RH	-0.001/%RH
Тетр	63 Hz/°C	-0.015/°C
Pressure	0	+0.04/kPa
Resolution	±2 Hz (±200 ppm CO ₂ or ±0.5% RH)	±0.01

Page 15

An Infineon Technologies Company

Conclusions

- A new class of MEMS-implemented CO₂ sensors has been demonstrated:
 - Simple and uncritical geometry
 - Strong potential for mass-production at low cost
- A PLL-based electronic interface ASIC has been implemented in a separate study (A. E. Edvardsen et al., Norchip 2004)
- The MASCOT project results on modelling, implementation and characterisation has established a platform for further development and performance optimisation
- The application area may be extended to other gas species
- Advantages of the MASCOT concept:
 - Performance / cost
 - Elimination of aging effects (improved lifetime and reliability)
- Industrial alliance partners are sought for the next step in the innovation process

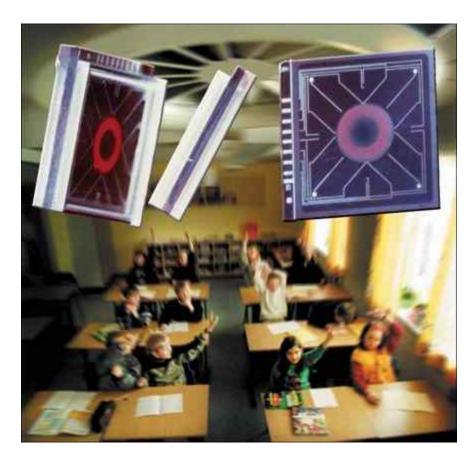
Future Nordic Sensors Outline: A few examples from SINTEF...

ICT

Microsystems and Nanotechnology

SINTEF + NBI merger January 2006

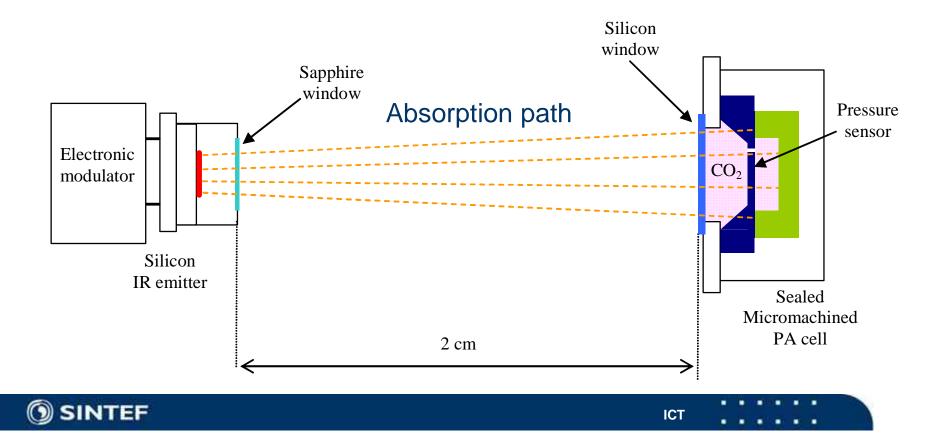
NBI=Norwegian Building Research Institute


MASCOT... (Presented by Per)
 R&D on Other new technologies

MEMS possibilities

IP Proposal "Multi-CEPOC"

PhotoAcoustic Gas Sensor



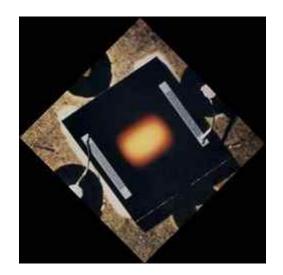
- MEMS Pressure sensor
- IR-source chip
- Reference Gas
- Goal: SINGLE Chip
- Wafer-level packaging

PhotoAcoustic Gas Sensor

- A photo acoustic signal is generated in the micromachined PA cell
- The signal is measured by the pressure sensor (microphone)
- The pressure signal is reduced when target gas is present in the absorption path, due to the loss of IR transmission

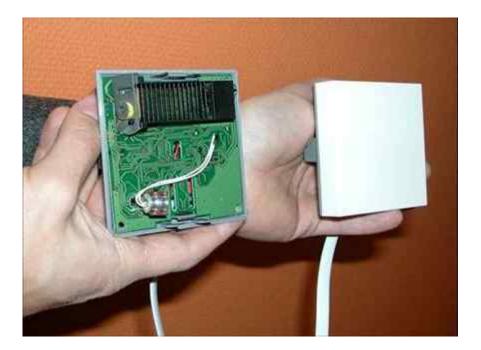
Advanced NDIR- SIMRAD Gas sensors

- "Silicon chip inside"
- IR-source


SIMRAD Optronics
 Offshore Gas-sensors
 20 years life-time...

Advanced NDIR- (IR-source) II

- "Silicon chip inside"
- IR-source


- SIMRAD Optronics
 Offshore Gas-sensors
 20 year life-time...
- Now "State-of-the-art" and soon low-cost...

Diffractive Optical Elements


- "DOE-inside"
- Polymer replication possible
 - CD-technology...
- Optical spectrometer/ dedicated sensor for CO₂
- OptoSense AS
 - Demo
 - Folded polymer light/absorption path

Diffractive Optical Elements (DOE)

- "DOE-inside"
- Polymer replication possible
 - CD-technology...
- OptoSense AS
 - Demo
 - Folded polymer light/absorption path
 - Polymer chip...
 - Shown: gold-plated Si-chip

IP Proposal Multi-CEPOC

Multi-CEPOC

Call FP6-2006-IST-6, instrument IP

- 29 partners
 - 15 countries, 10 SMEs
- 16 MEUR
- Networked Embedded Systems
- Ambient intelligence for:
 - Ambient comfort
 - Healthy, productive workers and school children
 - Energy savings
 - Cost savings...

Proputational IP Multisensors for Controlling Indoor Environment Parameters by Optimal HVAC Control — A case application project for a versatile embedded sensor system

Propusal actives Multi-CEPOC

Call identifier FPis-2005-05T-5 Type of instrument Integrated Project Date of information 2005-09-21 (final version, post submission: v8)

List of porticipants:

writing al	nt Participant organisation name	Short name	Counts
	The Foundation so Scientific and Instantial Revinants	SWIEF	140
	Hechnical Linus of Deeman (DTL) - Interlational Centre for Human Educational & Energy	580	1.04
2	Darson Technologica Helliate	1041	CK.
- 4	Terminut Alt	Gerbauffeld	31
. D.	Pederation CE European Healing And AF-Candidising Associations	RUHYA	- EM
· 41.	Is went where All	HON	12
- T	VTT Technical Retaranch Centre of Finland:	VET	1.073
	DPD(SA	6101 8/11	CHE
- 0	Downshy of MourtsBe - Holline of Weitsbedreukogy		CI+
- 90-	Transition to Advantage View Press	F.An	DK.
111	EnAccess Networks	-mAccess	108
11	Universität Laneburg	Unit G	- DE
-12	Conventional a rEnergie Atomopie 1 Lan of appoint lesearch on a theater internate lants	10544397	198
	FAX Joenna 12 a	FAR	
	APCON Contra and Adomation Ltd	AFCON	
. 14	EM0. Az Elyitettu Uta	MEAD	1.16
17	INTRAGOM SA	PATRACOM	10A
48	Constanting Deverying of Technical Constant Constanting	1902	- 15
18	Spitt information Systems a.s.	1009007	
.25	Exemption Academity of Dilletone	645	-AT
21	Citil availant for Morroentsock gCartain	- C/6	
-72	Annulate University of Theorem Informatics Typetime & Apply attons Group (2014)	AL/Fh	- 68
-21	Net Technologen (N)	settem.	- GR
-24	Mrsanor, Vicion I.M.	Secure.	
-25	Kidde PLC - Cogorde Research	40050	LK
-25	Conversity themes the	Claronie	- 74
-31	Servers A()	19610406	-0+
-28	Contribution All Recovergian Blakting Pennincin institute	CEREMENT	- NO
29	Technologian Balang Penerasiti Intitute	1420	NO

Coordination name: Niels Prior OSTEPO Coordination enail: hpoRhintlef.no Coordination for: -47 22,007,350

