

Multi-sensor calibration issues and characterisation concepts

Does the sensor output make sense?

Jan Nielsen

Danish Technological Institute

25 November 2005

Introduction

What do we want:

- To measure
- To control

- We wish know if of our measurement meet our demands (accuracy)
- We wish to linearise the sensor output (for control)

• We need to calibrate the sensor!

Multi-sensors and calibration

Survey by DTI calibration laboratories on indoor environment sensor manufacturers shows:

- Several sensor-types for t/rh measurement
- Few sensor-types for CO₂-measurement
- Sensors are mainly linearised based on single-parameter calibration such as:
 - CO₂ sensors with reference gas mixtures at fixed t, rh
 - Temperature sensors in liquid baths
 - Rh sensors at fixed temperature with salts or fixed-temperature rh-chambers

Is this the optimal way? If not, what are the consequences?

Rh/t sensor featuring:

- State-of-the-art thin film capacitive polymer sensor
- Built-in thermistor for temperature measurement
- Temperature-compensated
- Calibrated in 5 points from 11 %rh to 75 %rh @25 °C
- Linearised on basis of the calibration
- Size: 5x10 mm
- Price: 1100 € (including electronics)

Manufacturers specification:

- Range: 0 %rh to 100 %rh, -10 °C to 50 °C
- Accuracy: ±1 %rh (15 °C to 30 °C) otherwise ±2 %rh
- Cross-sensitivity: 0.03 %rh/K (from scientific paper by the manufacturer)

Observation:

- The sensor response is clearly dependant on the temperature
- The sensor exhibits a significant hysteresis
- The manufacturers linearisation using a correction curve based on a single temperature and 5 rh values is insufficient to meet specs.

Suggested improvement:

- Better model based on more calibration data (t /°C, R /%rh)
- Example: $H(R, t) = (a_0 + a_1 R + a_2 R^2)(b_0 + b_1 t)$

(this model is based on experience from the calibration of a large number of rh sensors)

Improvement: approx. a factor 3!

Multi-sensor calibration issues

When designing the sensor be aware that the sensor responds to several influence parameters:

- Sensor temperature is affected by:
 - self-heating
 - heat-conduction
 - air-flow rate
- Thermal gradients influence electronics:
 - signal-conditioning, temperature-compensating and adjustment electronics
- Contamination and condensation can cause shift in response, acting differently over the range

The problems tend to increase as the sensor size decrease!

Multi-sensor calibration issues

Consider:

- Physical "built-in" limitations such as hysteresis
- Limitations in the physical models
 - i.e. the vapour-pressure equations are for synthetic air
- Cross-sensitivity with respect to:
 - temperature
 - gases in the air (H₂O, Ar, CO₂, ...)
 - pressure
 - contaminants such as dust
- Adequate selection of calibration points? Improve the uncertainty!
- Good calibration and modelling saves you money......

..... A lot of money!

Thanks to:

Jeremy Lovell-Smith, MSL, Wellington, New Zealand

More about modelling sensors:

J. Lovell-Smith & J. Nielsen, "Calibration equations for humidity applications", Proceedings on TEMPMEKO 2004

Bernieri A., Betta G., Dell'Isola M., "Statistical problems in calibration design", Advanced Mathematical Tools in Metrology II, 1996, pp 100-109