

ZigBee™ - The New Standard for Wireless Monitoring and Control

Svein Anders Tunheim Chief Technology Officer

International workshop on: Technological advances for controlling indoor environment. November 25, 2005, Taastrup, Denmark

Chipcon Overview

- Established 1996; currently 112 employees
- Global technology company with HQ in Oslo
- Leading supplier of radios for short-range wireless communications
 - High integration level, high performance, low power, RFtransceivers and transmitters, System-on-Chips (SoCs)
 - One-stop shop HW/SW solutions
- Market and technology leader in Consumer Electronics
- Market and technology leader in ZigBee for Home and Building Automation

Short-range Wireless Communications

Wireless Monitoring and Control Systems

- ▶ Large number of nodes → wireless solutions are required
- Low-complexity and low power protocol
- Low system cost

Wireless Monitoring and Control Systems

- Sensor nodes have typically only limited amount of data to send
- Sensor nodes remain quiescent in long periods of time

What is ZigBee?

- "The ZigBee Alliance is an association of companies working together to enable reliable, cost-effective, low-power, wirelessly networked monitoring and control products based on an open global standard"
- ZigBee Promoters: BM, Chipcon, Ember, Freescale, Honeywell, Mitsubishi Electric, Motorola, Philips and Samsung
- More than 180 member companies

- ...In home and building automation
- ...In alarm and security systems
- ...In PC & peripherals

- O ...In sensor networks
- ...In consumer electronics
- ...In personal health care

Why ZigBee?

Standard	ZigBee TM / IEEE 802.15.4	Wi-Fi [™] / IEEE 802.11b	BlueTooth [™] / IEEE 802.15.1
Application focus	Monitoring & Control	Web, Email, Video	Ad hoc cable Replacement
Stack Size (kBytes)	< 128	1000 +	250 +
Battery Life (days)	100 – 1000 +	0.5 - 5	1 - 7
Network Size (#nodes)	~Unlimited (65536)	Many	7
Bandwidth (kbps)	250	11 000	1000
Range (meters)	100 +	100	10 +
Target BOM costs	< \$ 3	\$ 9	\$ 5

ZigBee Protocol Stack

IEEE 802.15.4 PHY and MAC

- Standard for low data rate wireless Personal Area Networks (PANs)
- Focus on low power, low cost and robustness
- Defines the physical (PHY) and medium access control (MAC) communication layers
- 250 kbps at 2.4 GHz, available world-wide

IEEE 802.15.4 PHY Layer (2.4 GHz)

- Operates in the 2.4 GHz frequency band
- Defines 16 channels, with 5 MHz spacing
- Uses Direct Sequence Spread Spectrum (DSSS)
- Robust against interferers
- Packets up to 127 bytes
- Raw bit rate of 250 kbps
- Bandwidth of ~3 MHz
- ▶ Focus on co-existence with BluetoothTM / Wi-FiTM. Practical testing shows very good co-existence

Spectrum measured from Chipcon CC2420

IEEE 802.15.4 MAC Layer

- CSMA-CA for collision avoidance
- Acknowledge and retransmission of data packets
- Node addressing
- Frame Check Sequence FCS (CRC check)
- Transmitting optional beacons in the network
- Synchronizing to optional beacons
- Association / Disassociation on a network
- MAC layer security (based on AES-128 encryption)
- Gives the higher layer (e.g. The ZigBee network layer) a robust link for transmitting data ONE hop

ZigBee Higher Layers

- Includes reliable and robust network layer
- Intelligent channel selection
- Extends communication range through multiple hops
 - "Self healing" in the event of errors
- Can use optional routing tables for optimising network traffic
- Includes application profiles for interoperability

Types of networks

ZigBee defines three network topologies:

- PAN Coordinator "Coordinator"
- Full Function Device "Router"
- Reduced Function Device "End Device"

Network pieces – PAN Coordinator

PAN Coordinator

- "owns" the network
 - Starts a PAN
 - Allows other devices to join it
 - Saves messages for children as needed
 - Provides binding and address-table services
 - And more... could also have i/o capability
- A "full-function device" FFD
- Mains powered

Network pieces - Router

Router

- Routes messages
- Does not own or start network
 - Scans to find a network to join
- Allows other devices to join it
 - Saves messages for children as needed
- A "full-function device" FFD
- Mains powered depending on topology

Network pieces – End Device

End Device

- Does <u>not</u> route messages
- Does <u>not</u> own or start network
 - Scans to find a network to join
- Does <u>not</u> allow other devices to join it
- Polls parent to get messages
- A "reduced-function device" RFD

ZigBee Device Type Model

- ZigBee products are a combination of Application, ZigBee Logical, and ZigBee Physical device types
- Profiles may define specific requirements for this combination, but can also leave this up to manufacturers

Inside a typical node

- Software:
 - RTOS
 - Radio MAC driver
 - Protocol stack
 - Defines Coordinator, Router or End Device
 - I/O functions
 - Application code
- User interface ?

Typical ZigBee Platform Requirements

- For battery operated nodes: Need low active power consumption of RF-transceiver and MCU
- Must also have MCU sleep modes with ultra-low power consumption
 - In many applications the standby power is the dominant portion of the total power consumption
 - Wake up on interrupts
 - Wake-up on time-out event of real-time-clock
- Equally important with very fast transition times from sleep modes to active

ZigBee Compliant Platform

ZigBee System Development

- The benefits with using a ZigBee Compliant Platform:
 - Prequalified according to ZigBee requirements
 - Reduces development and certification costs
 - Shortens time-to-market
- Note: The end-product must go through a ZigBee certification and interoperability program to claim that it is "ZigBee Certified"
- Note: Regulatory approvals come in addition (e.g. FCC/ARIB/ETSI)

ZigBee Compliant Platform Example

Embedded Software:

- ZigBee software stack (Z-Stack from Figure 8 Wireless / Chipcon)
- IEEE 802.15.4 MAC functions

Hardware, i.e. PCB reference design, including:

- □ IEEE 802.15.4 RF-transceiver (CC2420)
- Microcontroller
- Antenna solution/connection

CC2430 - System-on-Chip for ZigBee Systems

Summary

ZigBee provides intelligence and wireless network capabilities into everyday devices

CHIPCON HELPS THE WORLD CONNECTING SMARTER

