The importance of a "good" indoor environment now and in the future

Jørn Toftum

International Centre for Indoor Environment and Energy Department of mechanical Engineering Technical University of Denmark

Requirements to the indoor environment

An indoor environment that is comfortable, healthy and inspiring

...at the lowest possible energy consumption

General solution

The not unhealthy, uniform indoor environment that results in fewest dissatisfied

Air quality

Thermal environment

Psychophysics

Psychophysics is dealing with the relationship between physical **stimuli** and their subjective correlates, or percepts.

Wikipedia.org

Physical

Air temperature Radiant temperature Air velocity Air humidity

Clothing insulation Activity level

Physiological

Skin temperature

Subjective

Thermal sensation Dissatisfaction

Prediction of thermal sensation

Prediction of:

Perceived thermal sensation = $f(t_a, t_{mrt}, rh, v, I_{cl}, M)$ Perception of draught = $f(t_a, v, Tu)$ Perceived air quality = $f(c, t_a, rh)$

CO₂ as an indicator of bioeffluents

Ventilation Philosophies

2000	Paradigm	Pollution source	
2000		People + building	
1935	Comfort		
1900	Contagion	People	
1800	Poison		

Not only humans pollute!

Chemical reactions in indoor air

Criteria for indoor air quality and ventilation

	Rec	Recommended ventilation rates		
	For occupants L/(s person)	For building emissions L/(s m ²)		
		Low polluting	Non low-polluting	
Category A	10	1.0	2.0	
Category B	7	0.7	1.4	
Category C	4	0.4	0.8	

(prEN 15251)

What's the energy penalty for selecting a higher category?

Required energy for ventilation and climatisation

Example conference room

Category	Low polluting	Non low-polluting
A	2.4	3.2
B	1.8	2.1
С	0.8	1.0

Annualized cost of a typical 45 m² office with 11 m² per occupant

Salaries	100
Rent	10
Capital equipment	14
O&M	4
Energy	1 (2-3)

(Woods 1989)

Estimated relations between perceived air quality and performance of office work

- 10% less dissatisfied with air quality \Rightarrow 1.1% increase in performance
- Doubling ventilation rate \Rightarrow 1.8% increase in performance
- Similar relations for temperature

Source of productivity gain	Potential annual health benefits	Potential US annual savings or productivity gain (1996 USD)
Reduced respiratory illness	16 – 37 mill avoided cases of common cold or influenza	6 – 14 billion USD
Reduced allergies and asthma	18% to 25% decrease in symptoms for 53 million allergy sufferers and 16 million asthmatics	1 – 4 billion USD
Reduced SBS symptoms	20% to 50% reduction in SBS symptoms experienced by 15 mill workers	10 – 30 billion USD
Improved worker performance from changes in thermal environment and lighting		20 – 160 billion USD
Total cost of energy in US commercial buildings		70 billion USD
		(Fisk 2000)

Implications

In the Nordic countries this will amount to approximately 3 – 20 billion USD from IEQ related improvements in worker performance

In a life cycle assessment of a building a lost annual productivity of 5% becomes completely dominating

Learning in schools

Effect of reduced indoor temperature
Effect of increased outdoor air supply rate

School performance & ventilation

What do we need in the future

- Multi-compound sensors?
- Artificial noses?
- Sensor networks?
- Delegate more control to the occupants?
- Sufficient air of good quality!