

MEMS based sensors for indoor environment applications

Ralph W. Bernstein, <u>Niels Peter Østbø</u> SINTEF ICT Bertil Høk Høk Instruments Per G. Gløersen SensoNor ASA

"The future is up to YOU!"

Thanks for your attention!

+SINTEF Byggforsk AS

() SINTEF

MiNaLab (Micro Nano Lab)

- Clean room area: SINTEF: 800 m² University of Oslo: 600 m²
- Micro environments, class 10
- A full silicon processing line for MEMS and radiation detectors
- Capacity of 10.000 6" wafers/year
- 35 employees at SINTEF
- Located at the campus of University of Oslo
- 240 MNOK invested in scientific equipment and laboratory infrastructure
- Funded by Norwegian Research Council and SINTEF

MiNaLab offer

- One of two silicon processing lines in Norway. The only independent one.
 - Offers the complete range from design, process and device development through flexible prototyping and production.

Production:

- Contract production of MEMS using processes not commercially available in industrial foundries.
- Contract and foundry production of radiation detectors.
- MEMS design center:
 - SensoNor process = multiMEMS/microBUILDER
 - Other available foundry processes (TRONICS, pMUMPS)
 - In-house MEMS processes

Key parameters for IAQ control

- Temperature
- CO₂
- Humidity
- Other gases (e.g. CO)

There is a strong demand for (networks of) low cost, low power, miniaturized multi sensors

Solid state gas sensors

Catalytic
(Solid) Electrolyte Sensors
Semiconductor
Chemical sensors
ISFET

Solid state sensors

Advantages: Low cost and small size

<u>Disadvantages:</u>
Cross sensitivity
Poisoning
Influence by humidity
Long term drift

Infrared (IR) gas sensing

Advantages:

- •Selective
- •Sensitive
- Non contact
- •Reliable

Disadvantages:

Inherently expensive (at least two components)

- •Large size
- Requires drift compensation
- Complex packaging

MEMS components to complete sensors

State-of-the-art IR examples (Nordic)

- SenseAir-
- Vaisala

SINTEF

- Simrad Optronics
- (OptoSense, kT Sensor)

R & D examples (SINTEF)

- PhotoAcoustic
- ElectroAcoustic
- Diffractive Optical Elements (CO-sensor)
- Wireless
- (Networks of) Autonomous, wireless sensors

SINTEF

MEMS devices for infrared gas sensing

SenseAir infrared IAQ sensors

CO₂ sensor for embedded solutions

Housing for industrial environments 150 x 86 x 46 mm

SenseAir infrared IAQ sensors

IR emitter

The folded optical path results in a very long path length and a very sensitive, yet quite small, device! Lambert-Beer's law: $I_d = I_o e^{-cds}$ I_o is the incident light intensity, I_d the transmitted light intensity, d the optical path length s the molecular transition strength

CO₂ "engine" for embedded solutions

🕥 SINTEF

SenseAir infrared IAQ sensors Plug-in CO₂ sensor OEM modules

CO₂Engine

Variable Air Volume supply IDCC - Intelligent Diffuser for Climate Control

Autonomous Sensors

- Low power multi-sensor (MASCOT development)
- Low power, efficient nodes (EYES, e-CUBES)
 - Infineon, Thomas Lentsch et al. (*montie)
 - Chipcon/Texas Instr., Tunheim et al. (*montie)

Integrated System of Systems

- IAQ/IEQ
- Energy and Asset Management
- Continuous Commisioning
- Safety and Security
- Built-in "Smart Components"

Micro ElectroMechanical Systems (MEMS)

Miniaturized systems that carry out several operations. Typically: sensing, singnal conditioning and actuation

Micro sensor and/or actuator
ASIC
Packaging

SINTEF

🕥 SINTEF

Microsystem technology

- Utilizes the production technology developed for microelectronics to make sensors (MEMS)
 - Miniaturization
 - High volume, low cost production
 - Integration with electronics
- Special processes
 Micromachining
 Functional thin films
 Wafer stacking

Why silicon technology

- Batch processing => low cost, high volume
- Well established production technology
- Advanced infrastructure, materials and design tools available
- Wide range of sensor principles available
- Silicon has attractive mechanical properties
- Integration is possible

() SINTEF

Micromaching of 3D structures for mechanical sensors

0.0 kV 4.0 495x Etd 15.1 *

MEMS-integration (e-CUBES) Wafer stacking

🕥 SINTEF

MEMS-integration (e-CUBES)

2

IR sources

Thermal sources
 Conventional "light bulbs"
 MEMS based IR sources
 IR LEDs
 IR LASERS

The 🕥 SINTEF infrared emitter

- Produced by silicon micromachining
- Grey body spectrum
- Electronically controlled modulation
- Modulation depth: 20 % @ 50 Hz
- Power consumption: ~ 1 Watt

 Application example: SIMRAD Optronics Gas Detector for methane (CH4)
 More than 15 years of continuous operation in the North Sea

Emission spectrum from the IR source in air

25

Infrared detectors

Photoconductive
 Photovoltaic
 Photovoltaic
 Thermal detectors
 Thermopile
 Bolometer
 Pyrolectric
 Golay cells

MEMS based IR detectors

Thermopile detector

Wolfgang Schmidt and Jörg Schieferdecker

2

Filters

Single gas selectivity
Compensation
Multi gas detection (CO, humidity)

The Carbocap® technology from VAISALA

SINTEF

The Carbocap® technology from VAISALA

30

The Carbocap® technology from VAISALA

31

A CO and methane sensor based on a thermally tuned Fabry-Perot filter

Micromachined in silicon
Based on the thermo-opto effect ΔT ~ 25° C
Designed to synthesize a characteristic gas spectrum
Electrically modulated 10 nm
Wavelengths from 1.2 μm ->
Modulation frequency: 1 Hz
Simple design, low cost

Rogne, Bernstein, Avset, Ferber, and Johansen MOEMS '99, Heidelberg

CO absorption pattern

Absorption pattern synthesized by multi-line filter

+

🕥 SINTEF

CO measurments with the slab sensor

34

Diffractive optics for gas sensors

35

CO₂ and hydrocarbon sensor based on DOE

Typical commercial IR gas sensor

Typically 5 - 10 cm size

3

Filter and detector in one chip: The SINTEF photoacoustic gas sensor

The photoacoustic detector chip

- Wafer level gas filling
- High precision piezoresisive pressure sensor
- Transferred to the SensoNor MPW foundry process

🕥 SINTEF

The photoacoustic signal

SINTEF

CO₂ Measurement with the PA sensor:

200-100 ppm resolution

41

Characteristics

High selectivity without additional filters

- High sensitivity => small size
- No pumps and valves
- Easily implemented in MEMS technology => low cost
- High volume production and packaging technology required
- Long term drift compensation has to be implemented

MASCOT: Micro-Acoustic Sensors for CO₂ Tracking

Per Gerhard Gløersen, SensoNor AS Bertil Hök, Hök Instrument AB Niels Peter Østbø, SINTEF

The MASCOT project was cofinanced by the IST programme of the European Commission under grant number IST-2001-32411

1/100/ instrument ab

SINTEF

Device modelling basics

Relationship between velocity of sound c and molecular mass M of a gas:

$$c = \sqrt{\frac{RT\gamma}{M}}$$

- R: universal gas constant (=8.314 J/mol K),
 - T: absolute temperature (K)
- γ: Ratio of specific heat at constant pressure and volume

Resonant frequency and Q of a Helmholtz resonator:

Neck effective length *l* and area A (radius a)

Compliant gas volume V

 μ : kinematic viscosity of gas

SINTEF

Schematic drawing of sensor chip

46

MASCOT in operation

SINTEF

Sensor output signal in air and CO₂

The resonance frequency shifts from 40 to 32 kHz and the Q factor increases from 6.5 to 8.1

Sensor characteristics

	f _r	Q
Typical value	40250 Hz	6.60
CO ₂	-11 Hz/1000ppm	+0.009/1000ppm
RH	+4 Hz/%RH	-0.001/%RH
Тетр	63 Hz/°C	-0.015/°C
Pressure	0	+0.04/kPa
Resolution	±2 Hz (±200 ppm CO ₂ or ±0.5% RH)	±0.01

🕥 SINTEF

MEMS based humidity sensors

Die Size: 2 mm x 2 mm

Figure 3. The HMX2000, a silicon-based RH sensor, contains a full Wheatstone bridge circuit and a temperature sensor on a single chip (A). The circuitry is shown for the devices on the sensor chip (B).

- The challenge is often NOT to be sensitive to humidity and temperature
- Temperature sensors are easily implemented as an integral part of standard electronics.
- Multi sensors are often based on integration of several sensors at the same electronic boards.
- MEMS devices have good potential for integration since they are small and often based on the same principles (piezoresistive, capacitive and optical)
- MEMS also opens for a higher degree of monolithic integration
 - Today:Temperature sensors as part of the gas sensor chip

Conclusion

- IR technology offers highly sensitive, selective and reliable gas sensors.
- MEMS based IR sources, IR detectors, tuneable optical filters, and complete gas and humidity sensors are available.
- IR gas sensors are, however, still expensive due to large size, expensive components, packaging, and drift compensation. Higher level of integration is required.
- A DOE based CO₂ under industrialization by Optosense AS
- A MEMS based photo-acoustic gas sensor for CO₂ is demonstrated offering high selectivity sensitivity, and is compatible with MEMS technology.
- A new class of **electro-acoustic** MEMS-implemented CO₂ sensors has been demonstrated:
 - Simple and uncritical geometry
 - Strong potential for mass-production at low cost
- A CO sensor based on a thermally tuned F-P filter is demonstrated. The detection limit for CO was 20 ppm•m, and 50 ppm•m for methane.
- MEMS based sensors are by their small size and fabrication and packaging technology potentially suitable for multi-sensor integration

Autonomous Sensors "the multi-CEPOC vision"

- Low power multi-sensor (MASCOT development)
- Low power, efficient nodes (EYES, e-CUBES)
 - Infineon, Thomas Lentsch et al. (*montie)
 - Chipcon/Texas Instr., Tunheim et al. (*montie)

Integrated System of Systems

- IAQ/IEQ
- Energy and Asset Management
- Continuous Commisioning
- Safety and Security
- Built-in "Smart Components"

ZigBee Protocol:

IEEE 802.15.4 PHY and MAC

- Standard for low data rate wireless Personal Area Networks (PANs)
- Focus on low power, low cost and robustness
- Defines the physical (PHY) and medium access control (MAC) communication layers
- 250 kbps at 2.4 GHz, available world-wide

ZigBee Protocol:

Types of networks

ZigBee defines three network topologies:

Tree

The eyesIFX WSAN node

eyesIFX node specification

- Supply Voltage: 3V, Li-coin cell
- Current consumption:
 - Sleep mode
 8.95 µA
 - Transmit mode 11,95mA @ 4dBm
 - Receive mode: 9.42mA
- Modulation: FSK
- Transmit frequency: 868,3 MHz
- Data rate: 19,2 kBps
- Adjustable transmit power (-35 to +4dBm)
- RAM size 10 kByte
- ROM size 48 kByte
- Serial data flash size: 4MBit
- Sensors on board: Light, Temperature, RSSI
- Multi-I/O port extender. USB-interface. JTAG-interface

"The future is up to YOU!"

Thanks for your attention!