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"The future is up to YOU!”

Thanks for your attention!
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MiNaLab (Micro Nano Lab)

Clean room area:
SINTEF: 800 m?2
University of Oslo: 600 m?

Micro environments, class 10

A full silicon processing line for
MEMS and radiation detectors

Capacity of 10.000 6”
wafers/year

35 employees at SINTEF

Located at the campus of
University of Oslo

240 MNOK invested in scientific
equipment and laboratory
Infrastructure

Funded by Norwegian Research
Council and SINTEF
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MiNaLab offer

M One of two silicon processing lines in Norway. The only
Independent one.

W Offers the complete range from design, process and device
development through flexible prototyping and production.

B Production:

m Contract production of MEMS using processes not
commercially available in industrial foundries.

B Contract and foundry production of radiation detectors.
B MEMS design center:
B SensoNor process = multiMEMS/microBUILDER

B Other available foundry processes (TRONICS, pMUMPS)
B [n-house MEMS processes
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Key parameters for IAQ control

B Temperature

m CO,

B Humidity

@ Other gases (e.g. CO)

There is a strong demand
for (networks of) low cost,
low power, miniaturized
multi sensors
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Solid state gas sensors

m Catalytic
M (Solid) Electrolyte Sensors

B Semiconductor

B Chemical sensors .
(ol
MISFET . @

¥

I SENSORS
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Solid state sensors

Advantages: Low cost and small size

Disadvantages:
*Cross sensitivity
Poisoning

nfluence by humidity
_ong term drift
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Infrared (IR) gas sensing

Advantages:
*Selective
eSensitive
‘Non contact
*Reliable

Disadvantages:

sInherently expensive (at least two components)
eLarge size

*Requires drift compensation

Complex packaging
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MEMS components to complete sensors

B State-of-the-art IR examples (Nordic)
B SenseAir-
B Vaisala
B Simrad Optronics
m (OptoSense, kT Sensor)

B R & D examples (SINTEF)

B PhotoAcoustic

m ElectroAcoustic

m Diffractive Optical Elements (CO-sensor)

B Wireless

m (Networks of ) Autonomous, wireless sensors
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/ detector system

optical filter
sample cell
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CO, sensor for embedded solutions

Housing for industrial
environments
150 x 86 X 46 mm
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SenseAir infrared IAQ sensors

Infrared Transmission

Lambert-Beer's Law of Absorptiunl
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The folded optical path results in
a very long path length and a very
sensitive, yet quite small, devicel
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SenseAir infrared IAQ sensors
Plug-in CO, sensor OEM modules
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Autonomous Sensors

® Low power multi-sensor (MASCOT development)

® Low power, efficient nodes (EYES, e-CUBES)

m [nfineon, Thomas Lentsch et al. (*montie)
m Chipcon/Texas Instr., Tunheim et al. (*montie)

¥ [ntegrated System of Systems
IAQ/IEQ
Energy and Asset Management
Continuous Commisioning
Safety and Security
Built-in "Smart Components”
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Micro ElectroMechanical Systems (MEMS)

Miniaturized systems that carry out several operations.
Typically: sensing, singnal conditioning and actuation

B Micro sensor and/or actuator
B ASIC
B Packaging
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Microsystem technology \\:L\'xr \*;\}&\\
m Utilizes the production technology {E {\\ %}\ *
developed for microelectronics to *‘\‘;\\\\\c R
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make sensors (MEMS)
m Miniaturization medical pressure [Ny
sensors in the eye [

\ofa needle.
e AL

m High volume, low cost ‘

production
B |[ntegration with electronics

Piezo resistors

W Special processes

I— '—'/
B Micromachining
B Functional thin films ’ TTT !

m \Wafer stacking

Pressure sensor
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Why silicon technology

W Batch processing => low cost, high volume
® Well established production technology

® Advanced infrastructure, materials and design tools
available

® Wide range of sensor principles available
B Silicon has attractive mechanical properties
W Integration is possible
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MEMS-integration (e-CUBES)

Wafer stacking

Antenna
g tf-circuit
Radio digital
e-CUBE ; baseband

<l ﬁ‘"“ Processing unit
| M Sensor Function
e-cube radio | ' — -

= FPower Management
e-cube application — Power storage

layer{s) £ g
nergy scavenging
e-cube Power (e.g. vibration,solar)
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MEMS-integration (e-CUBES)
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g ff-circult
Radio digital
e-CUBE baseband
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IR sources

B Thermal sources
m Conventional “light bulbs”
B MEMS based IR sources

® IR LEDs
B [R LASERS
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Ion OptICS Inc. e),

n Sensor Design and Man ftrgr
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The @ SINTEF infrared emitter

Produced by silicon micromachining
Grey body spectrum

Electronically controlled modulation
Modulation depth: 20 % @ 50 Hz
Power consumption: ~ 1 Watt

Application example:

SIMRAD Optronics Gas Detector
for methane (CH4)

More than 15 years of
continuous operation

in the North Sea



http://www.sintef.no/default.aspx?id=114
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Emission spectrum from the IR
source In air
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Infrared detectors

B Photon detectors
B Photoconductive
B Photovoltaic

® Thermal detectors
m Thermopile
B Bolometer
m Pyrolectric
m Golay cells
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MEMS based IR detectors

Thermopile detector

| B

Wolfgang Schmidt and Jorg Schieferdecker PerkinElmer”

optoalactronlos.
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Filters

M Single gas selectivity
B Compensation
B Multi gas detection (CO, humidity)
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The Carbocap® technology from
VAISALA

Samplg cell FPI-filter IR detector
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The Carbocap® technology
from VAISALA

Air gap IR Iight

Upper mirror ——___,

[
Lower mirror —

Aperture —

Transmission <
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The Carbocap® technology from
VAISALA

Long pass filter

Thermopile IR detector
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A CO and methane sensor based on a thermally
tuned Fabry-Perot filter

Micromachined in silicon
*Based on the thermo-opto effect
AT ~25°C

*Designed to synthesize a
characteristic gas spectrum
*Electrically modulated 10 nm
*Wavelengths from 1.2 um ->
Modulation frequency: 1 Hz
«Simple design, low cost

Rogne, Bernstein, Avset, Ferber, and Johansen
MOEMS ’99, Heidelberg
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CO measurments with the slab sensor
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Diffractive optics for gas sensors
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Typical commercial IR gas sensor

EDINBURGH
SENS@RS

Typically 5 - 10 cm size —
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Filter and detector in one chip:
The SINTEF photoacoustic gas sensor

IR window

B

Modulated —
IR source Pressure sensor

Sealed
absorption
chamber
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The photoacoustic detector chip

Wafer level gas filling

High precision piezoresisive
pressure sensor

sensor

Transferred to the SensoNor
MPW foundry process
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CO, Measurement with the PA sensor:
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Characteristics

High selectivity without additional filters
High sensitivity => small size
No pumps and valves

Easily implemented in MEMS technology
=> |ow cost

® High volume production and packaging
technology required

B Long term drift compensation has to be
Implemented
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MASCOT:
Micro-Acoustic Sensors
for CO, Tracking

Per Gerhard Glgersen, SensoNor AS
Bertil HOk, HOk Instrument AB
Niels Peter @stbhg, SINTEF

The MASCOT project was co-

MASCOT financed by the IST programme of

Micro Acoustic Sensor & ystem for €O, Tracking the European Commission under
grant number 1ST-2001-32411
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Device modelling basics

Relationship between velocity of sound ¢ and molecular mass M
of a gas:

RT7/ R: universal gas constant (=8.314 J/mol K),

C=[—1 T: absolute temperature (K)
M v: Ratio of specific heat at constant pressure and volume

Resonant frequency and Q of a Helmholtz resonator:

) Neck effective length | f = ¢ / A
\ and area A (radius a) Y A WAV,

l o

Compliant gas
volume V

u: kinematic viscosity of gas
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Schematic drawing of sensor chip

Compliance

Activating
resistors on
diaphragm

Inertance
and

resistance Detecting
resistors on
diaphragm
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MASCOT In operation
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Sensor output signal in air and CO,
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The resonance frequency shifts from 40 to 32 kHz and the
Q factor increases from 6.5 to 8.1
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Sensor characteristics

f

r

Q
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40250 Hz
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-11 Hz/1000ppm
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-0.001/%RH

Temp

63 Hz/°C

-0.015/°C
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0
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(200 ppm CO,
or £0.5% RH)
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MEMS based humidity sensors

(A) (B)

Mieramashined Palymanc

Cantilewer Beam Sensing Film emig
Plezoresistor
Strain Qauge

Onchip
Sihcon Temparature
Flatform LT T

Dile Size: 2 mm x 2 mm

Figure 3. The HMX 2000, a silicon-based RH sensor, contains a full Wheatstone bridge circuit and
a temperature 2ensor on a single chig (A). The circuitry iz shown for the devices on the sensor
chip (B).

P4 HycroOMETRIX
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Some aspects of multi sensors

® The challenge is often NOT to be sensitive to humidity and
temperature

B Temperature sensors are easily implemented as an
Integral part of standard electronics.

B Multi sensors are often based on integration of several
sensors at the same electronic boards.

® MEMS devices have good potential for integration since
they are small and often based on the same principles
(piezoresistive, capacitive and optical)

® MEMS also opens for a higher degree of monolithic
Integration
B Today:Temperature sensors as part of the gas sensor chip
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Conclusion

IR technology offers highly sensitive, selective and reliable gas sensors.

MEMS based IR sources, IR detectors, tuneable optical filters, and complete gas and
humidity sensors are available.

IR gas sensors are, however, still expensive due to large size, expensive components,
packaging, and drift compensation. Higher level of integration is required.

A DOE based CO, under industrialization by Optosense AS

A MEMS based photo-acoustic gas sensor for CO, is demonstrated offering high selectivit
sensitivity, and is compatible with MEMS technology.

A new class of electro-acoustic MEMS-implemented CO, sensors has been demonstrated:
B Simple and uncritical geometry
B Strong potential for mass-production at low cost

A CO sensor based on a thermally tuned F-P filter is demonstrated. The detection limit for
CO was 20 ppmem, and 50 ppmem for methane.

MEMS based sensors are by their small size and fabrication and packaging technology
potentially suitable for multi-sensor integration
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Autonomous Sensors
"the multiI-CEPOC vision”

® Low power multi-sensor (MASCOT development)

® Low power, efficient nodes (EYES, e-CUBES)

m [nfineon, Thomas Lentsch et al. (*montie)
m Chipcon/Texas Instr., Tunheim et al. (*montie)

¥ [ntegrated System of Systems
m |AQ/IEQ
m Energy and Asset Management
m Continuous Commisioning
m Safety and Security
m Built-in "Smart Components”
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ZigBee Protocol:

| IEEE 802.15.4 PHY and MAC

= Standard for low data rate
wireless Personal Area
Networks (PANS)

= Focus on low power,
low cost and robusthess

© Defines the physical (PHY)
and medium access

control (MAC)
communication layers

= 250 kbps at 2.4 GHz,

available world-wide
(< chincon




@ SINTEF
ZigBee Protocol:

‘Types of networks

© ZigBee defines three network topologies:

Star

. PAN Coordinator - “Coordinator”
Full Function Device - “Router”
O Reduced Function Device - “End Device”

(< Chipcon
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The eyesIFX WSAN node

JTAG var.  Control
connector Resistor LEDs Light sensor TDAE260

= =
Infimgon |
(_ S
Sevacr Bosil i ]

g, It

Tempeoerature

external Resistors to Extension Reset button
antenna  select antenna Connector & Resct LED

LSE controller & EEProm

il s

mspd3I0F1611 serial data
flash Capyright € Infineon Technoiogles 2005. All ights reserved.
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eyeslFX node specification

Supply Voltage: 3V, Li-coin cell
Current consumption:

— Sleep mode 8.95 HA
— Transmit mode 11,95mA @ 4dBm
— Receive mode: 9.42mA

Modulation: FSK

Transmit frequency: 868,3 MHz
Data rate: 19,2 kBps

Adjustable transmit power (-35 to +4dBm)

RAM size 10 kByte
ROM size 48 kByte
Serial data flash size: 4MBit

Sensors on board: Light, Temperature, RSSI
Multi-I/O port extender. USB-interface. JTAG-interface
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