

•{7.7182818284

Influence parameters in CT scanning

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f$

Pavel Müller

DTU Mechanical Engineering Technical University of Denmark

31st May 2011

DTU Mechanical Engineering Department of Mechanical Engineering

182818284

Outline

Advantages, disadvantages and solutions

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i-1}}{i!}$

- Influence parameters in CT scanning
 - X-ray source
 - Rotary table
 - Threshold determination
 - Material composition
 - Magnification
- Conclusion

DTU Mechanical Engineering

Department of Mechanical Engineering

Advantages and disadvantages of CT

ADVANTAGES

- Non-destructive
- $_{\odot}$ Short scanning time
- $_{\odot}$ Volume data of high density
- $_{\odot}$ Determination of inner and outer geometry

Disadvantages

- $_{\odot}$ No accepted test procedures available so far
- Complex and numerous influence quantities affecting measurements
- Reduced measurement capability due to measurement errors (artefacts)
- Problem encountered when scanning multiple materials within one product
- Measurement uncertainty in many cases unknown (results are not traceable)

Advantages and disadvantages of CT

ADVANTAGES

- Non-destructive
- \circ Short scanning time
- $_{\odot}$ Volume data of high density
- \circ Determination of inner and outer geometry

Disadvantages	SOLUTIONS		
$_{\circ}$ No accepted test	$_{\odot}$ Apply calibrated standards to correct measurement		
\circ Complex and num	errors and achieve traceability		
• Reduced measure	\circ Evaluate task specific measuring uncertainty		
• Problem encounte	$_{\odot}$ Adopt experience from coordinate metrology to CT		
• Measurement und	$_{\odot}$ Perform tests to understand the influence of error		
	sources		

HARDWARE: X-ray source

X-ray source target material

• Target characterized by material of different atomic number (Z)

 \circ Z \rightarrow X-ray spectrum \rightarrow X-ray penetrative ability

• X-rays with higher energy penetrate more effectively

 $_{\odot}$ High Z → reaching higher penetration (spectrum shifted towards high energy levels)

HARDWARE & OPERATOR: X-ray source

Source power (source current & acceleration voltage)

 \circ **Current** \rightarrow influence X-ray intensity (quantity or amount of radiation energy)

 \circ **Voltage** → influence X-ray intensity (amount of X-rays) and energy distribution (quality=penetration power)

 $_{\odot}$ Proper setup for current and voltage is needed \rightarrow different for various materials, densities, geometries, sizes.

HARDWARE: X-ray source

225kV micro focus and 450kV macro focus within one CT system

- $_{\odot}$ Tube voltage: 200kV and 300kV
- Specimen: Commercial plug
- Materials: Metallic pins, Polymeric housing

Results

 $_{\odot}$ 450kV source \rightarrow bigger parts to obtain overall image

 $_{\odot}$ 225kV source → high resolution (level of detail) image due to small spot size (5-200µm)

 \circ 450kV source → less artefacts, low resolution (spot size of 2.2mm)

 $_{\odot}$ 225kV source \rightarrow more artefacts around pins due to two materials with different att. coeff.

Kastner, J. et. al., 2006, *Advanced Applications of Computed Tomography by Combination of Different Methods*, *In: Proceedings of 9th European Congress on Non-Destructive Testing (ECNDT 2006)*.

HARDWARE & OPERATOR: Rotary table & Positioning and orientation

Effect of object position and orientation in the scan volume
Measured/simulated distance between two spheres (3x3x3 voxel)
Different positions and orientations

- Different positions and orientations
- \circ Different ball bar sizes

 $_{\odot}$ Condition: Object in the cone beam

Kumar, J. et. al., 2011, Analysis of the effect of cone-beam geometry and test object configuration on the measurement accuracy of a computed tomography scanner used for dimensional measurement, Measurement Science and Technology **22**, 15 pp., doi: 10.1088/0957-0233/22/3/035105

HARDWARE & OPERATOR: Rotary table & Positioning and orientation

 $_{\odot}$ Effect of object position and orientation in the scan volume $_{\odot}$ Measured/simulated distance between two spheres (3x3x3 voxel)

- $_{\rm O}$ Different positions and orientations
- $_{\rm O}$ Different ball bar sizes
- Condition: Object in the cone beam

Results

 \circ Hypothesis: No errors in the system \rightarrow Object position and orientation do not have any signification effect on the measurement accuracy

 $_{\odot}$ Errors in the system \rightarrow Similar meas. errors at all object configur.

Kumar, J. et. al., 2011, Analysis of the effect of cone-beam geometry and test object configuration on the measurement accuracy of a computed tomography scanner used for dimensional measurement, Measurement Science and Technology **22**, 15 pp., doi: 10.1088/0957-0233/22/3/035105

Application of CT Scanning in Industry 31/05/2011

SOFTWARE: Threshold determination

- Threshold value is a parameter for accurate image segmentation and surface data determination by indentifying edges inside the voxel
- Threshold value can be determined by measuring reference objects (e.g. cactus step-gauge)
- Widely used ISO-50 (AVG between gray values for air and material)

SOFTWARE: Threshold determination

 Threshold value is a parameter for accurate image segmentation and surface data determination by indentifying edges inside the voxel

 Threshold value can be determined by measuring reference objects (e.g. cactus step-gauge)

Widely used ISO-50 (AVG between gray values for air and material)

Results

 $_{\odot}$ Measurements performed on the planes between flat surfaces of cactus

 \circ Using ISO-50 → edge often shifted with respect to the real material edge

 \circ Al casting → threshold too small (~40%, i.e. closer to the air gray values)

 \circ Steel & ZrO₂ → threshold too large (~85%, i.e. closer to the material gray values)

Kiekens, K. et. al., 2010, *A test object for calibration and accuracy assessment in X-ray CT metrology*, 10th International Symposium on Measurement and Quality Control, pp. 5-9

MEASUREMENT OBJECT: Material composition

Geometrical measurements on silicone rubber
Measurand: Cone diameter at 3 given heights
Calculation of measuring uncertainty using GUM

Müller, P. et. al., 2011, *Geometrical metrology on silicone rubber by computed tomography*, In: Proceedings of the 11th eu**spen** International Conference, Como, Italy, pp. 243-246

MEASUREMENT OBJECT: Material composition

Müller, P. et. al., 2011, *Geometrical metrology on silicone rubber by computed tomography*, In: Proceedings of the 11th eu**spen** International Conference, Como, Italy, pp. 243-246.

18 DTU Mechanical Engineering, Technical University of Denmark

Application of CT Scanning in Industry 31/05/2011

OPERATOR: Magnification

- o 42mm replica step gauge
- $_{\odot}$ Evaluation of *E* according to VDI/VDE 2617-6.2
- \circ 4 incremental dist. measured unidirectionally \circ E=Lm-Lc+PS±PF

Parameter	Setup 1	Setup 2	Setup 3
Magnif. [x]	2.5	2.5	1.667
FDD [mm]	275	500	500
VS [µm]	20	20	30

OPERATOR: Magnification

Cantatore, A. et. al., 2011, *Verification of a CT scanner using a miniature step gauge*, In: Proceedings of the 11th eu**spen** International Conference, Como, Italy, pp. 46-49

OPERATOR: Magnification

Cantatore, A. et. al., 2011, *Verification of a CT scanner using a miniature step gauge*, In: Proceedings of the 11th eu**spen** International Conference, Como, Italy, pp. 46-49

Conclusions

CT scanning is a powerful tool for dimensional measurements.

 $_{\odot}$ Numerous influence quantities influence the scanned data and these have to be further corrected to obtain reliable results.

 $_{\odot}$ In order to fully understand the influence factors, tests should be performed to support knowledge on CT scanning.

Thank you for your attention

-{7.7182818284

Influence parameters in CT scanning

 $f(x + \Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f$

Pavel Müller

DTU Mechanical Engineering Technical University of Denmark

31st May 2011

DTU Mechanical Engineering Department of Mechanical Engineering