
DANISH MEAT RESEARCH INSTITUTE

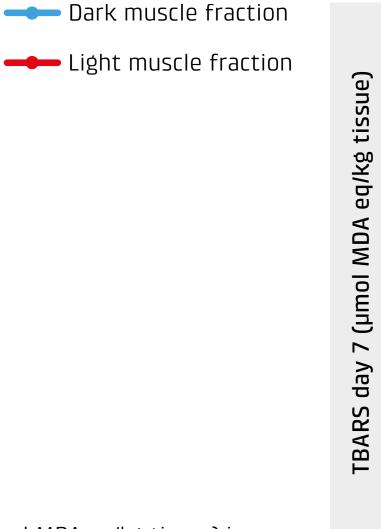
Enhancing Crispiness of Pork Belly by Tri-gas MAP

Mari Ann Tørngren, Dimitrios Spanos, Caroline P. Baron, Mette Christensen & Louise Hededal Hofer

AIM

To determine the influence of MAP and muscle fibre composition on eating quality and oxidative stability of retail-packed pork belly during refrigerated storage.

CONCLUSION


Lipid and protein oxidation markers were affected by storage time and gas mixture in both light and dark muscle fractions of pork belly. To obtain enhanced crispiness of pork belly, the meat industry should retail-pack in a tri-gas MAP with a gas mixture of $50\% O_2 + 40\% CO_2 + 10\% N_2$.

MATERIALS & METHODS

	Re	12 female pigs (79-83 kg) belly, crust freezed and sliced (tail-packed in 2-gas and 3-gas <i>l</i> tored at 5°C, 1200 lux for 6-7 da	MAP	
MAP 0/20	MAP 40/20	MAP 50/20	MAP 50/40	MAP 80/20
20% CO_ + 80% N_	40% O ₂ + 20% CO ₂ + 40% N ₂	50% O ₂ + 20% CO ₂ + 30% N ₂	50% O ₂ + 40% CO ₂ + 10% N ₂	80% O ₂ + 20% CO ₂

ANALYSIS

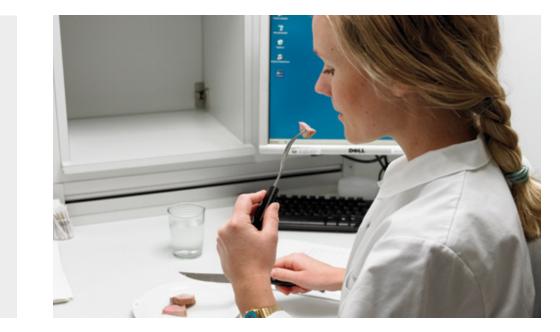
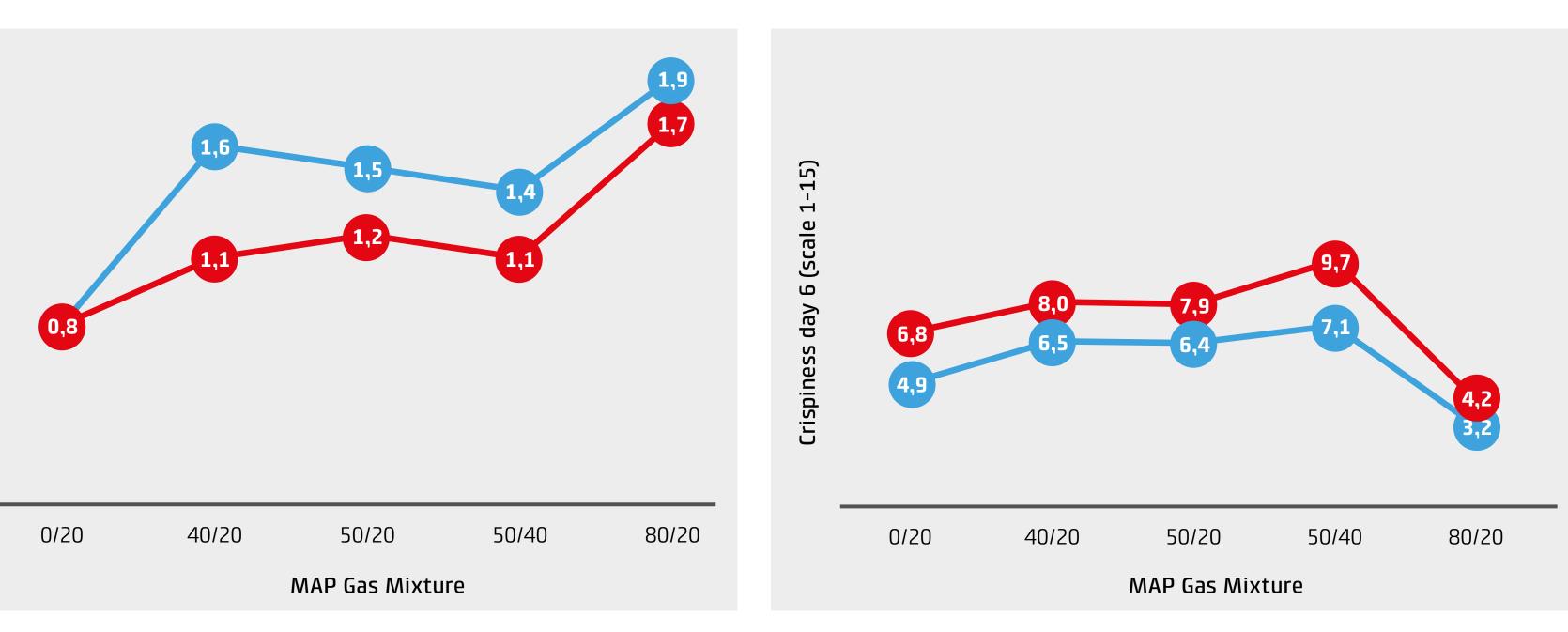


Figure 1. TBARS (µmol MDA eq/kg tissue) in dark and light muscle fractions of sliced pork belly, retail-packed in MAP (O_2/CO_2) and stored for 7 days at 5°C (n=3).


Oxidation Lipids by TBARS Proteins by carbonyls

Eating quality Sensory profile Cooking loss

Crispiness of meat

Crispiness of rind

Figure 2. Crispiness of meat and rind of sliced pork belly, retail-packed in MAP (O_2/CO_2) and stored for 6 days at 5°C (n=6).

TBARS were affected by oxygen level in MAP. As shown in Figure 1, TBARS were, for both muscle fractions, lowest for non-oxygen MAP, and increased with O₂ levels: MAP 0/20 < MAP 40/20, MAP 50/20, MAP 50/40 < MAP 80/20.

When stored in an O_2 containing gas mixture, the dark muscle fraction were more sensitive to lipid oxidation than the light muscle fraction.

In relation to protein oxidation, packaging in high-CO₂ (MAP 50/40) for 7 days, increased carbonyl formation in the light muscle fraction compared with intermediate CO₂ (MAP 50/20). In general, increased O₂ levels appeared to gradual increase carbonyl formation during storage.

Eating quality was affected by the combination of O_2 and CO_2 . As shown in Figure 2, high CO_2 levels in combination with intermediate O_2 levels (MAP 50/40) increased the crispiness of pork belly meat and rind compared to traditional high O_2 MAP.

Using a MAP 50/40 cooking loss increased significantly, suggesting that the water-holding capacity of pork belly is affected by the level of CO_2 .

CONTACT MARI ANN TØRNGREN, SENIOR CONSULTANT, MATN@DTI.DK