Quantification of Prokaryotic Gene Expression in Shallow Marine Subsurface Sediments of Aarhus Bay, Denmark

Joel E. Kostka, Mike Humphrys, Lars Holmkvist, and Bo Barker Jørgensen

ISMOS-2, Aarhus, Denmark
18 June, 2009
Outline

- Background information
- Experimental methods
- Results
- Discussion/Conclusions
Objectives

- To link the dynamics of prokaryotic gene expression and geochemical rate determinations for use in description of metabolically-active sulfate-reducing prokaryotes (SRP)
- Place SRP into context of abundance and metabolic activity of Bacteria and Archaea through community level 16S rRNA quantitation
- Identify the metabolically-active SRP through taxonomic description of mRNAs

✓ Humphrys, 2009
Ecology of Sulfate-reducing Prokaryotes (SRP)

- Broad phylogenetic groups
- 7 lineages: 5 Bacteria, 2 Archaea
- 23 genera within the Deltaproteobacteria

- Broad metabolic diversity
 - Heterotrophs, autotrophs, syntrophs

- Radiotracer assay and good functional gene target for SRP

- dsr analysis has shown that SRP diversity much larger than previously thought

- Few studies have quantified in situ gene expression in marine sediments

Muyzer and Stams, 2008
Expression of genes for SRP

- Expression of respiratory genes correlated with rates of metabolism in pure cultures and in the field
- However, respiratory gene expression shown respond to other parameters besides rates
- Expression of genes linked to central carbon metabolism may provide a better proxy for rates

✓ Neretin et al., 2003; Chin et al., 2004; 2008; Holmes et al., 2005; Villanueva et al., 2008
Functional gene targets

- Desired target = phylogenetically informative gene that is highly conserved and unique to a distinct group and for which expression patterns are correlated to metabolic rates

- **SRP** - Dissimilatory bisulfite reductase gene (*dsrAB*)
 - highly conserved amongst the SRP

- **FeRP** - Citrate synthase (*gltA*)
 - highly conserved amongst Desulfuromonadales (Geobacteraceae + Desulfuromonadaceae)
 - present in all members examined, more closely related to that of eukaryotes than other prokaryotes
 - key gene in the incorporation of acetate into the TCA cycle
 - Desulfuromonadales often predominate in Fe(III)-reducing zones
Sulfate reduction in the marine subsurface

- Aarhus Bay, Denmark
 - Wealth of background data (Jørgensen, Ingvorsen, Finster, Ramsing, and many others)
 - Well-defined sulfate-to-methane-transition
- Research cruise on 27 March, 2007, to site M1
Aarhus Bay Sampling - 27 March 2007
Methods

Biogeochemistry

Profiling of porewater and solid-phase geochemistry to 5 m below surface

35S radiotracer determination sulfate reduction rates

Molecular Microbiology

Quantitation of dsrAB gene transcript levels

Quantitation of 16S rRNA for Archaea and Bacteria

16S rRNA and dsrAB gene sequence analysis
Experimental Approach - Molecular Analysis

Extraction and purification of mRNA and total RNA from sediment

cDNA synthesis with gene specific primer → Amplification and quantitation via qPCR → Statistical analysis → Clone library construction & comparative sequence analysis

Amplification of cDNA (method validation and quality control)

Adapted from K. Chin
Results

BIOGEOCHEMISTRY

GENE EXPRESSION

SEQUENCE ANALYSIS
Sediment Depth (cm)

- Sulfate-to-methane-transition (SMTZ) zone at 1.6 to 2.2 m depth
- Sulfate persists to > 5 m depth in the sediment column
Sulfate Reduction Rates

- Vary with depth by 6 orders of magnitude
- Measured to > 5 m depth
16S rRNA QUANTITATION

- rRNA ~ 3 orders of magnitude > for Bacteria at surface; equivalent or < at depth
- Bacterial rRNA parallels with SRR and dsr expression

16S Ribosomal RNAs (RNA)

- Bacteria
- Archaea

<table>
<thead>
<tr>
<th>Sediment Depth (cm)</th>
<th>Copies ug(^{-1})</th>
<th>Copies g(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sediment Depth (cm)</th>
<th>Copies ug(^{-1})</th>
<th>Copies g(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GENE EXPRESSION - *dsrAB*

mRNA Copy Number

DNA Copy Number

- Copies ug\(^{-1}\)
- Copies g\(^{-1}\)
Six libraries were constructed using universal PCR primers 27F and 1492R.

Libraries at 20, 40, 61, 170, 340, and 465 cm depth below seafloor.
16S rRNA Phylogeny

<table>
<thead>
<tr>
<th>phylum</th>
<th>%</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirochaetes</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Chloroflexi</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Bacteroidetes</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria</td>
<td>13.9</td>
<td></td>
</tr>
<tr>
<td>Firmicutes</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>unclassified_Bacteria</td>
<td>78.3</td>
<td></td>
</tr>
</tbody>
</table>

\[n = 244 \]

Proteobacteria = 34

85 % of total **Proteobacteria**

11.8 % of total library

Taxa of interest represent a small fraction of clone libraries
Six libraries also constructed for *dsrB* from primers 2060F and 4R

Sequences were translated in-frame for protein comparison

Majority of clones affiliated with other uncultured SRP
Sulfate Reduction Rates vs. Gene Expression

- Obtained by normalizing sulfate reduction rates to \(dsrAB \) mRNA expression values.
- Comparison of time-integrated and instantaneous rate data is not absolute as mRNA residence time is not addressed.
Sulfate Reduction Rates vs. Gene Expression

![Graph](image.png)

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Mean [SO$_4^{2-}$] (mM)</th>
<th>Mean SRR (nmol SO$_4^{2-}$ cm3 d$^{-1}$)</th>
<th>dsrAB Transcripts (copies g sediment$^{-1}$) (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>19.2</td>
<td>6.55×10^3</td>
<td>2.72×10^6</td>
</tr>
<tr>
<td>40</td>
<td>16.9</td>
<td>3.49×10^2</td>
<td>2.72×10^5</td>
</tr>
<tr>
<td>61</td>
<td>14.8</td>
<td>1.27×10^2</td>
<td>5.71×10^4</td>
</tr>
<tr>
<td>170</td>
<td>0.58</td>
<td>5.18×10^0</td>
<td>7.42×10^4</td>
</tr>
<tr>
<td>340</td>
<td>0.34</td>
<td>9.79×10^{-1}</td>
<td>9.01×10^3</td>
</tr>
<tr>
<td>465</td>
<td>0.18</td>
<td>4.24×10^{-1}</td>
<td>2.25×10^3</td>
</tr>
</tbody>
</table>

Mean [SO$_4^{2-}$] (mM)
Mean SRR (nmol SO$_4^{2-}$ cm3 d$^{-1}$)
dsrAB Transcripts (copies g sediment$^{-1}$) (w/w)
Conclusions

- Expression profiles of dsrA were directly correlated with sulfate reduction rates and Bacterial rRNA content.
- mRNA analysis provides a valuable molecular proxy for interrogation of in situ sulfate-reducing communities in marine sediments.
- mRNA expression confirmed that sulfate reduction cellular machinery remains active at low sulfate, below the SMTZ.
- May be explained by fermentation, syntrophy, or growth on alternative electron acceptors.
- Transcript-specific SRR indicates shift in regulation of expression at SMTZ.
Conclusions

- 16S rRNA phylogeny detects similar SRP lineages, but likely underrepresents SRP community relative to dsr
- SRP sequence analysis provides a direct link between gene expression and taxonomy
- SRP communities show some phylogenetic clustering when compared to sediment depth
Acknowledgements

- Florida State University
 MIKE HUMPHRYS
 STEFAN GREEN
 JON DELGARDO

- Max Planck Institute
 Bo Barker Jørgensen
 Lars Holmkvist

- Georgia State University
 Kuki Chin