Application of CT scanning in Industry: Nano and Micro-CT for Materials Science

Danish Technological Institute, 31/5/2011

01 SkyScan

- 02 CT scanners for Materials Science
- 03 Examples and Results
- 04 Conclusions

History of SkyScan

2007:

2010

02

03

04

1980-1990: Pioneering work in micro-CT technology

- 1996: <u>SkyScan</u> established
- 1997: First <u>desktop micro-CT</u> (SkyScan 1072)
- 1999: First <u>portable micro-CT</u> scanner (SkyScan 1074)
- 2002: First in vivo desktop micro-CT (SkyScan 1076)

- 2004: First <u>10Mpixel micro-CT</u> with variable geometry for versatility and high speed (SkyScan 1172)
- 2004: First laboratory <u>nano-CT</u> (SkyScan 2011)
- 2004: Micro-CT for <u>multimodality imaging</u> with PET, SPECT and bioluminescence imaging (SkyScan 1178)
- 2006: <u>Optical projection tomography</u> developed with the UK MRC, Edinburgh (SkyScan 3001)
 - <u>Compact micro-CT</u> scanner (SkyScan 1174)
 - New high performance in vivo micro-CT for preclinical research (SkyScan 1176)

Distributors

What is x-ray micro-CT?

X-ray microfocus computer tomography (μ -CT) is a non-destructive experimental technique where the 3D internal microstructure of the sample is virtually reconstructed with micrometer accuracy with the use of x-ray shadow images of different orientations of the sample.

02

01

03

OBJECT X-RAY

Object rotates between a static x-ray source – detector

High resolution μ -CT:

- low-energy X-ray source
- high-resolution detectors

Geometrical magnification by cone beam

An example in images

Transaxial virtual cut through the sample

3D volumerendered model of the sample based on the reconstructed slices

Coronnal virtual cut through the sample

SKYSCAN

SkyScan portfolio

SkyScan 1174

SkyScan 1173

SkyScan 2011

SKYSCAN

SkyScan Software

01

02

03

04

- Reconstruction software: NRecon + NReconServer
- Dataviewer: viewer for reconstructed slices
- CTVox: Volume rendering
 - CT Analyser: Accurate and detailed study of micro-CT data
- CTVol: Surface rendering

Volume rendering of Ni foam, scanned at 1.9 µm on 1172

Stages for Materials Research

• Material testing stage

• Cooling/Heating stage

section no

SKYSCAN

How to further characterize this scaffold?

- Porosity?
- Pore distribution?
- Specific surface?
- Strut thickness?

Image processing in CTAn

Step 1: Load a stack of 2D images

Step 2: Define your volume of interest (VOI)

Image analysis with CTAn

http://www.skyscan.be/next/CTAn03.pdf

Step 4: Calculations

[10/25/10 13:21:49]3D analysis			
Date and time	25.10.2010 13:21		
Operator identity	SkyScan		
Computer name	ANALYSIS01		
Computation time	0:46:56		
Dataset	1_pla60krec		
Location	F:\SCAFFOLD_datasets\PLA scaffold\		
Description	Abbreviation	Value	Unit
Number of layers		201	
Lower vertical position		2.69012	mm
Upper vertical position		3.76617	mm
Pixel size		5.38025	um
Lower grey threshold		40	
Upper grey threshold		255	
Total VOI volume	TV	76.36765	mm^3
Object volume	Obj.V	16.44264	mm^3
Percent object volume	Obj.V/TV	21.5309	%
Total VOI surface	TS	175.4985	mm^2
Object surface	Obj.S	878.26327	mm^2
Intersection surface	i.S	34.69621	mm^2
Obiect surface / volume ratio	Obi.S/Obi.V	53.41376	1/mm
Obiect surface density	Obi.S/TV	11.50046	1/mm
Structure thickness	St.Th	0.07185	mm
Structure linear density	St.Li.Dn	2.99652	1/mm
Structure separation	St.Sp	0.30831	mm
Number of objects	Obj.N	494	
Number of closed pores	Po.N(cl)	17	
Volume of closed pores	Po.V(cl)	0.03582	mm^3
Surface of closed pores	Po.S(cl)	1.69803	mm^2
Closed porosity (percent)	Po(cl)	0.21739	%
Volume of open pore space	Po.V(op)	59.88919	mm^3
Open porosity (percent)	Po(op)	78.4222	%
Total volume of pore space	Po.V(tot)	59.92501	mm^3
Total porosity (percent)	Po(tot)	78.4691	%

Calculation on the object surface (with respect to the object volume)

Calculation on the average PLA thickness and separation thickness

Porosity calculation

01

02

Image analysis with CTAn

A true 3D thickness can be measured which is model independent. (Hildebrand & Ruegsegger). Bias from the 3D orientation of the structure is kept to a minimum in this case.

Hildebrand T and Ruegsegger P, J. Microsc. 185, 67-75. SKYSCAN

Stone cores

01

02

03

04

05

Sandstone

Carbonate

Progress in further development of 3D petrographical analysis (rock texture, mineralogy and porosity) to link the data to petrophysical parameters such as permeability, acoustic signals...

Metal parts

SKYSCAN

Visualising the internal structure of a copper tube

Aluminum cooler

SkyScan SEM-CT

X-ray CT Internal microstructure of the sample

Working principle

- 1. Objective lens
- 2. Electron beam
- 3. Target

SKYSCAN

- 4. X-ray beam
- 5. Object
- 6. 2D X-ray detector

Radiolarian

01

02

Early Cretaceous radiolarian Pantanellium Riedeli Pessagno from a rock at a depth of 6,316 m in the Mariana Trench, western Pacific.

Pixelsize 396 nm, Voltage: 30 keV, Beam current: 780 nA SEM with Schottky FE filament

Conclusions

- X-ray nano and micro-CT, with subsequent 3D image analysis, is a very usefull tool for the characterization of the microstructure of different types of samples and materials.
- With the use of special object stages, the change in microstructure can be studied in-situ under different conditions.

Questions?

• For further questions, sample scanning and demos, feel free to contact me:

bart.pauwels@skyscan.be

