Aspects of traceability of dimensional CT measurements

Markus Bartscher, Ulrich Neuschaefer-Rube, Marko Neukamm, Matthias Schulze

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin, Germany

Andreas Staude, Jürgen Goebbels, Karsten Ehrig

Federal Institute for Materials Research and Testing, Berlin, Germany

1. Introduction

PTB – German national metrology institute Traceability

2. Aspects of traceability of dimensional CT

Dismountable reference standard Tactile measurements of freeforms Actual-nominal value comparisons Modeling for enhanced probing

3. Short Outlook: reference standards for micro CT

Microtetrahedrons as reference standards Application of microtetrahedrons

4. Conclusions

Physikalisch-Technische Bundesanstalt 🏻 PB 🔀 🗛

- 3 -

Metrology light source MLS in Berlin-Adlershof

Berlin-Charlottenburg

PTB – German national metrology institute

Metrological traceability often unequal to colloquial use of "traceability"

Definition:

- results traceable to SI-unit "meter"
- continuous calibration chain
- measurement uncertainty renowned

For complex measurements systems traceability is often not accomplished for all measurements; i.e. the device is not traceable.

Traceability is one of the primary tasks of national metrology institutes

PTB CT system in Braunschweig

NIKON Metrology XT H 225 ST CT system

- X-ray tube with two X-ray heads:
 225 kV 225 W reflection target
 225 kV 20 W transmission target
- 2k x 2k PerkinElmer 1620 (detector size 400 mm)
- Axes with linear scales
- Fast reconstruction (5-10 min)
- 225 kV rotational target 640 W in aquisition

- 5 -

lon trap CT measurement (J. Wübbena, PTB, QUEST)

PB 🗙 B

Design & manufacturing

- 6 -

• • • • •

PB Tactile probing of freeform surface Challenge: Probing direction, probe radius correction, point determination Probe direction Probing point 1 Probing point 3 for normal vecto for normal vector Specified assessement assessement radius Nominal contour Nominal Nominal point Actua normal normal Actual contour Probing point 2 for normal vector Nominal point assessement X Enhanced probing scheme using Zeiss feature: "Raumpunktmessung" Picture and naming according to Zeiss convention Point 2 ("Plane-point") is the most probable contact point for the tactile probing of the surface

DTI, Taastrup, 31. May 2011

•

Results of iterative probing scheme

Effect in probing direction

Effect perpendicular to probing direction

Iteratively measured points shift lateral on surface \rightarrow effect of topology, sphere diameter and strategy

For tripod radius 0.5 mm average lateral shift: 25 µm

Unstable point shows: 150 µm lateral shift

one point suspicous (unstable)

Consequences

Iterative probing success can be controlled

- Further analysis with a variable tripod necessary
- "Plane" approach may fail at certain critical points

Proper actual-nominal value comparisons

Standard (false) scheme: Tactile CMM measurement <u>point</u> <u>set as actual</u> and surface set as reference (nominal value) Correct scheme:

Tactile CMM measurement <u>point and</u> <u>assessed surface vector set as reference</u> (nominal value) and surface set as actual

Solution for applying the correct scheme:

Use appropriate CMM measurement & actual-nominal comparison (inspection) software: Here, ATOS 6.2 (GOM Corp., Germany) is used (data analysis Dr. Thesing, GOM) or use successor software GOM Inspect

• • • •

PB 🗙 BAM

Measurement result:
6 CT measurements, 205 kV – 210 kV,
(48 μm)³ – (105 μm)³ voxel size, analyzed at 29-35 points, iterative tactile probing

red: CT (reference) - tactile (actual)black: tactile with normal vector (reference) - CT (actual)

Difference between false and correct comparison scheme (difference between deviations "red minus black")

- 10 -

• • • •

DTI, Taastrup, 31. May 2011

• • • •

Mathematical formulation – fitting of quadric to surface point data

$$G_i(\vec{r}_i, \mathbf{C}, \mathbf{b}, c) = 0$$
 for $i = 1, \dots, n$

 $F(\hat{\mathbf{L}}, \hat{\mathbf{X}}) = \mathbf{B} \cdot \mathbf{v} + \mathbf{A} \cdot \hat{\mathbf{x}} + F(\mathbf{L}, \mathbf{X}^0) = \mathbf{0}$ Linearization (Gauß-Helmert)

 $\hat{\mathbf{x}} = \hat{\mathbf{X}} - \mathbf{X}^0$ $\mathbf{v} = (\hat{\mathbf{L}} - \mathbf{L})$ $F(\mathbf{L}, \mathbf{X}^0)$

the reduced parameter vector the vector of residuals the inconsistency values

 $\sum_{i} \mathbf{v}_{i}^{2} \to \min$ $\Omega = \mathbf{v}^{T} \mathbf{v} - 2 \cdot \mathbf{k}^{T} \cdot F(\hat{\mathbf{L}}, \hat{\mathbf{X}})$

with korrelates ${\bf k}$

Implementation in MATLAB R2009a (using standard modules only)

Mathematical formulation – results from real point data (CT data)

Data points from real CT data of cast part with sculptured surfaces

DTI, Taastrup, 31. May 2011

- 13 -

• • • •

PB

Update of ISO 15530-3 treatment of systematic errors (ISO TC 213 WG10) Procedure of ISO 15530-3:2004 for uncorrected systematic errors was not consistent with GUM

 $Y = y - b \pm U$ has to

According to GUM systematic error *b* has to be corrected and to be stated in the result *Y*

$$U = k \sqrt{\boldsymbol{u}_{cal}^2 + \boldsymbol{u}_p^2 + \boldsymbol{u}_w^2 + \boldsymbol{\underline{u}}_b^2}$$

rewritten formula conformant to GUM

PB

Additional treatment of uncorrected systematic errors *b* in upcoming VDI/VDE 2630-2.1 draft

$$U = k \sqrt{u_{cal}^2 + u_p^2 + u_w^2 + \underline{b}^2}$$

rewritten formula conformant to GUM

Task specific microtetradheron standards (made by PTB)

Microtetrahedrons with stepped size with 4 ruby sphere, respectively

Microtetrahedrons with 3 ruby spheres and one sphere of different material (all Ø 0.5 mm)

DTI, Taastrup, 31. May 2011

Manufacturing of tetrahedrons Dr. R. Meeß, J. Brzoska, A. Jung (PTB)

PB >

Applications of microtetrahedrons (here 4 ruby spheres Ø 0.5 mm) Analysis of systematic errors and effects

Criteria for structural resolution limits are to be defined

DTI, Taastrup, 31. May 2011

- 16 -

•

• • •

PB

Traceability is the core objective for any measurement technique

- Certain aspects and challenges have been addressed for CT systems:
 - use of dismountable reference standard
 - correct calibration & analysis of freeforms and assessed datasets
 - enhanced probing scheme for freeform surfaces
 - treatment of systematic errors according to ISO 15530 & VDI 2630-2.1

Micro CT requires dedicated reference standards, e.g. tetrahedrons.

Applications of standards up to now can be the analysis of systematic effect, system approval and structural resolution analysis

The authors thank for their contribution

Christoph Kuhn Andreas Deffner

Andreas Knoch

Michael Krystek

Jan Thesing

Contact: markus.bartscher@ptb.de

Activities supported by the German Research Foundation (DFG) project No. NE 757/2-2 and by the German Federal Ministry of Economics & Technology project No. AZ:II D5 –07/06

DTI, Taastrup, 31. May 2011

• • • • •