High-resolution bio-imaging with liquid-metal-jet x-ray sources

Hans Hertz Dept. of Applied Physics Royal Inst. of Technol. (KTH), Stockholm

and

KTH: Ulf Lundström, Daniel Larsson, Anna Burvall, Tunhe Zou, Jakob Larsson

Karolinska Inst.: Marie Henriksson, Ulrika Westermark, Hjalmar Brismar; Lena Scott

Excillum AB: Björn Hansson, Oscar Hemberg, Tomi Tuohimaa, Mikael Otendal, Per Takman et al

Laboratory hard x-ray imaging

Electron-Impact X-Ray Sources

The liquid-metal-jet x-ray source:

Choice of anode material

E-Beam Power Density Capacity = $v\rho(\Delta Tc_p + E_{vap})$ FOM = $Z\sqrt{\rho}(\Delta Tc_p + \overline{E}_{vap})$

Hemberg et al, Opt. Eng. (2004)

Early results (<2008): The liquid-(metal)-jet x-ray source

Otendal et al, Exp. Fluids (2005); Otendal et al JAP (2007); Otendal et al RSI (2008); Touhimaa et al. APL (2008)

Present status: Liquid-Metal-Jet Microfocus Sources

• Max: 15 MW/mm² short term

Spot size, stability and brightness

Comparison brightness

50 W/5 μm: 1x10¹¹ ph/s×mm²×mrad²×line NEXT: 15 MW/mm² @ 8 μm for 2000 h

Munich, Oct 2013

In/Ga anode for higher energy and thick-object imaging

Larsson et al, RSI (2011)

X-ray in-line phase-contrast imaging with liquid-metal-jet sources

- Refraction cause edge enhancement
- Good at high spatial frequencies
- Requires:
 - small x-ray spot
 - a high-resolution detector

Tuohimaa et al, APL (2007)

More phase, M:

Phase-contrast for enhanced CO₂ micro-angiography

50 µm

50 µm

50 µm

Phase retrieval

Quantitative detectability

How?

Ideal observer signal-to-noise ratio (SNR):

$$\mathrm{SNR}^2 = \iint \frac{|\Delta G(\mathbf{u})|^2}{W(\mathbf{u})} \mathrm{d}^2 u$$

- *u*: spatial frequency ΔG : Fourier transform of the signal difference *W*: noise power spectrum.
- $SNR^2 = 25$ is required to detect a vessel

Adjust dose to give $SNR^2 = 25$

Lundström et al, PMB (2012a)

Tumours:

Natural-contrast tumour demarcation in mouse

Natural contrast Absorption vs phase-contrast

Phase-contrast CO₂ microangio: Limitations

Gas filling

- Depends on gas pressure
- Required pressure is $P = 4\gamma/D$,
 - D = diameter of vessels
 - γ = surface tension

Photon noise

- Depends on
 - Exposure time
- Radiation dose
- Imaging distances
- X-ray source and detector

Biomedical and X-Ray Physics, KTH, Stockholm

Summary & Future

- Liquid-metal-jet sources promise 100× higher brightness
 - High-spatial resolution imaging
 - Spatial coherence for strong in-line phase contrast
- Phase-contrast imaging
 - Micro vasculature imaging with CO₂
 - Single-cell-size detail
 - Dose levels acceptable for small-animal studies.
- Next
 - Source:
 - Higher power, higher brightness, shorter exposure times
 - In-line CO_2 micro angiography:
 - Tumor angiogenesis studies
 - Plaque
 - Comparison between propagation-based and grating-based phase-contrast imaging

Biomedical & X-Ray Physics group Thanks!

