Institute of Materials Science and Technology– Vienna University of Technology

X-ray CT for microstructure characterization of light metals

Robert Koos, Guillermo Requena

Institute of Materials Science and Technology Vienna University of Technology - Austria

robert.koos@tuwien.ac.at, guillermo.requena@tuwien.ac.at

Properties of multiphase materials

X-ray -based tomography

Why Synchrotron Tomography for metallurgical investigations?

- <u>Coherence</u> \rightarrow phase contrast \rightarrow e.g. holotomography
- <u>High Brilliance</u> \rightarrow real time (in situ) experiments, ultra fast acquisition times
- <u>Tunability</u> → posibility of using monochromatic beam, use of the most suitable energy for a certain experiment/material
- Combination with other techniques available at the beamline (e.g. diffraction)

Microstructure of cast AI-Si alloys

Al-Si system

Microstructure of cast AI-Si alloys

ID19 – ESRF / Energy = 29 keV / voxel size = $(0.3 \ \mu m)^3$

Resolution ~ 1µm Non-destructive (same sample!) Larger volumes than FIB Phase contrast tomography e.g.holotomography using three distances

540°C / 4h

Requena, Garcés, Rodríguez, Pirling, Cloetens, AdvEngMat 11 (12) (2009)

Requena, Garcés, Rodríguez, Pirling, Cloetens, AdvEngMat 11 (12) (2009)

Asghar, Requena, Boller – Acta Materialia 59 (2011)

Asghar, Requena, Boller – Prakt Met 47 (2010) 7

Strength of cast Al-Si alloys

Addition of Cu, Ni, Fe to Al-Si alloys to form stable aluminides

Composite-like behaviour:

- -Al \rightarrow matrix (low strength but ductile)
- Eutectic Si
- different Aluminides [(high strength and E)

Asghar, Requena, Kubel – Mat Sci Eng A 527 (2010) Asghar, Requena, Boller – Acta Materialia 59 (2011)

ESRF ID19 **3D Elemental sensitive imaging** $vox = (0.3 \ \mu m)^3$ SSRL – Beamline 6-2 → Absorption edge contrast **Aluminides** M1 ~ -12m **Condenser** Pinhole network Wiggler 0m ~0.023m - -30.8m Vortex M₀ Off-axis Monochromator ~ -17m ~ -13.4m CCD ~1.370m **Mirror Pitch** Feedback ~-0.8m **Sample Stage Zoneplate** ~0.053m ~0.083m 20µm **Cu-Ni Aluminide** Sample prepared by FIB 8.4 keV Ni 8.25 keV 22.80um 5 µm 9.15 keV 8.925 keV Cu 1 Vox size ~ (24nm)³ Resol.~ 60nm

Liu, Mairer, Requena et al. Anal.&Bional.Chemistry, 2012 1

"In situ" solution treatment of Al-Si alloys

11

"In situ" solution treatment of Al-Si alloys

Stability of aluminides and their morphology after exposure 500°C

Hypereutectic alloy AlSi17Cu4

- Dissolution of Al₂Cu
- Spheroidisation

AISi12Cu5Ni2 piston alloy

 Network of Aluminides stable during ST at 500°C

In situ tensile test of Al-Si alloys

AlSi17Cu4 alloy

(1.4µm)³/voxel, 10s/tomo

Formation and growth of cracks and pores

In situ solidification of Al-Si alloys

cooling rate 5K/min, (1.4µm)³/voxel, 10s/tomo

In situ solidification of Al-Si alloys

Evolution of α -Al dendrites with Temp

Tolnai, Townsend, Requena, Lendvai, Degischer– Acta Mater (2012)

In situ solidification of Al-Si alloys

Tolnai, Townsend, Requena, Lendvai, Degischer– Acta Mater (2012)

<u>2D characterization is sometimes not enough \rightarrow 3D characterization of heterogeneous materials is necessary for cases where:</u>

-The connectivity of the phases and/or contiguity between phases must be analysed. These two parameters can play a decisive role on the mechanical properties of heterogeneous lightweight materials.

-The physical sectioning of the material would affect its internal state (e.g. distribution of internal stresses during loading, thermal cycling, etc.)

-New in situ characterization methods have opened new opportunities to help to understand dynamic processes.

Acknowledgements

<u>Vienna Group</u>:, Pere Barriobero Vila, David Canelo Yubero, (Hans Peter Degischer), Ricardo Fernández Gutiérrez, Robert Koos, (Georg Fiedler), Marta Rodríguez Hortalá, (Zahid Asghar), Johannes Jonke, (Maya Jaber), Edith Asiemo, Christian Zaruba

External: G. Garcés (CENIM-Madrid), D. Tolnai (HZG-Germany), F. Sket (IMDEA-Madrid), L. Salvo (INP-Grenoble), E. Maire, J. Adriane, C. Landron (INSA-Lyon), C. Poletti, Fernando Warchomicka (TU-Graz), Michael Schöbel (TUM-FRMII)

Beamline Scientists Elodie Boller (ESRF-ID19) Peter Cloetens (ESRF-ID19, ID22) Marco Di Michiel (ESRF-ID15) Mario Scheel (ESRF-ID15) Thomas Buslaps (ESRF-ID15) Thilo Pirling (ILL-Salsa) Florian Meirer (SSRL-6-2) Andreas Stark (DESY) Norbert Schell (P07-DESY)

In Situ study of damage in a CFR-Polymer

M. Rodríguez Hortalá, G. Requena, F. Sket

BÖHLER петак KOLBENSCHMIDT THANK YOU!