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Quote	   RA	   Brooks,	   G	   Di	   Chiro	   -‐	  
Radiology,	   1975:	   „...	   Itera-ve	  
reconstruc-on	   is	   more	   a2rac-ve	  
when	  the	  number	  of	  views	  is	  limited,	  
if	   noise	   is	   significant ,	   and	   if	  
addi4onal	   factors,	   eg,	   gamma-‐ray	  
aQenua4on,	   are	   present.	   For	   these	  
reasons,	  itera4ve	  methods	  are	  widely	  
used	  in	  radioisotope	  imaging.	  ...“	  
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Itera4ve	  Reconstruc4on	  

•  How	  can	  we	  make	  the	  image	  beQer?	  
•  Get	  a	  beQer	  match	  to	  the	  data	  
•  Requires	  a	  data	  model	  
•  Enforce	  desirable	  image	  proper4es	  
•  Encourage	  smoothness,	  edges,	  etc.	  
•  Need	  a	  measure	  of	  „beQer“	  

What	  is	  the	  idea	  behind	  IR?	  
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Design	  of	  an	  Itera4ve	  Reconstruc4on	  

•  System	  Model	  

It	  is	  like	  cooking:	  it	  is	  all	  about	  the	  recipe…	  
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•  Op4miza4on	  Method	  

•  Sta4s4cal	  Noise	  Model	  

•  Object	  Model	  

•  Basis	  Func4on	  

•  Noise	  Penalty	  Model	  

•  Prior	  Informa4on	  
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•  Con4nuous	   •  Discrete	  
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Point	  Samples	   Voxels	   Blobs	  (Kaiser-‐Bessel	  func4ons)	  

•  Advantage	  Blobs:	  Blobs	  projec4on	  to	  same	  2D	  representa4on	  
•  Advantage	  Voxels:	  For	  high	  resolu4on	  imaging	  voxels	  show	  less	  ar4facts	  
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4. Overview of available Tomographic Projectors

4.1. The pixel-driven
projector

Visualized in Figure 4.1, the Pixel-Driven Pro-

jector (PDP) reduces each pixel to its central

point, projects it to the detector and deter-

mines the fractions by which the surround-

ing pixels account for this spot in either linear

(PDPlin), cubic (PDPcub) or nearest-neighbor

interpolation (PDPnn) [Pet81, ZGH94, DB02,

DB04].

nearest-neighbor,

cubic interpolationlinear, and

image pixel

detector pixels

(inverted grayscale)

Figure 4.1.: A schematic of the pixel-driven

projector treating each pixel as one point

and interpolating between the detector pix-

els.

In this projector schematic and also in the

following ones, the ratio of the image to

the detector pixel size is greater than one to

highlight the functional principle.

For the PDP and also for all the other pro-

jectors discussed in this chapter, a forward-

projection means that the involved detector

pixels prorate the value of the image pixel,

whereas for the backprojection, the values of

the detector pixels sum up pro-rata in the im-

age pixel. The only difference is whether the

detector or the image pixel accumulates the

new value. Looping over all pixels of the im-

age and summing up all detector entries for

a forward-, or all image entries for a backpro-

jection, the sinogram, or the image, respec-

tively, emerges from a further loop over all

angles.

The main advantage of this simply designed

projector compared to the others, is speed.

As can be seen in Section 4.5, it outperforms

all the others by at least a factor of 1.5 for pro-

jections on standard CPUs1.

But on the other hand, there are big problems

at certain angles, namely those where lots of

projections end on the same detector spots.

Especially for the angles 0°, 45°, 90° and so

on, many pixel centers line up one after an-

other in the projection. If the pitch of the de-

tector pixels does not equal the pitch of these

projection agglomerations, a Moiré effect de-

velops in the sinogram, as visualized in Fig-

ure 4.2 on the following page. One can nicely

distinguish two types of domains: darker

ones, into which only one agglomeration falls

per pixel and brighter ones, where two ag-

glomerations sum up in each case. Because

of this bad behavior the nearest-neighbor in-

terpolation will not be considered in any fur-

ther speed or quality considerations.

However, if the image pixel size equals the de-

tector pixel size, exactly one agglomeration

falls into every detector pixel for multiples of

90° and that is why the effect disappears at

these angles, as shown at the example in Fig-

ure 4.3 on the next page. If the image pixel

size were
p

2 times the projector pixel size,

the Moiré patterns would disappear in the

same way for the diagonal angles.

1The terms of the corresponding test can be found in
the box on page 26.

21

4. Overview of available Tomographic Projectors

lates the exact projection of a square for each

pixel and thus considers perfectly its two-

dimensional shape.

image pixel

exact projection

detector pixels

(inverted grayscale)

r1st
r3rd r4th

r2nd

Figure 4.5.: A schematic of the area-weighted

projector. It respects the exact footprint

of the square-shaped image pixels. The

red area illustrates the trapezoid footprint

function.

Having the positions of the four corners of

a pixel on the detector, there has to be a

loop over all detector pixels between the first

and the last corner, which calculates the ap-

propriate weight according to the surface ra-

tio of the trapezoid falling into each detector

pixel. Mathematically, the trapezoid denotes

the surface under the footprint function

t (r ) =

8

>

>

>

>

<

>

>

>

>

:

h · r�r1st
r2nd�r1st

for r1st < r  r2nd

h for r2nd < r  r3rd

�h · r�r4th
r4th�r3rd

for r3rd < r  r4th

0 else

(4.1)

with h = 1/(r3rd� r1st),

where r is the spatial coordinate along the

detector and r1st to r4th are the projection

spots of the 1st to the 4th corner of the pixel

on the detector. The normalization h guar-

antees that the whole area below t (r ), or in

other words, the sum of all pixel weights, is

one. To reproduce the value for h given in

Equation 4.1 one has to take the symmetry

of the trapezoid into account that holds for

parallel-beam geometry and results in

r2nd� r1st = r4th� r3rd. (4.2)

In practice, the easiest way to get the corre-

sponding areas below the function, is to use

the integral function of the trapezoid

T (r ) =

rˆ
r1st

t (r 0)d r 0 = (4.3)

=
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1 r > r4th,

evaluate it at each detector pixel and subtract

the value of the previous evaluation.

The advantages of this kind of projector are

obvious: As it is designed to be the exact pro-

jection of a pixel, it produces less artifacts in

the reconstruction than other projectors, es-

pecially little noise and no problems at cer-

tain angles, as shown in Section 4.5. Further-

more, it serves as a great reference to check

the exactness of other projectors.

The price to pay for the exactness is a factor

of 2.6 - 3.2 in speed on standard CPUs1 (de-

pending on the computational accuracy and

whether it is a forward- or backprojection,

1The terms of the corresponding test can be found in
the box on page 26.
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see Section 4.5 for further details). Regarding

the difference in complexity, the extra time is

still quite moderate.

4.4. The distance-driven
projector

The Distance-Driven Projector (DDP) has

been suggested by B. De Man and S. Basu in

2002 [DB02, DB04]. It does not treat each

pixel as square anymore, but still approxi-

mates it as an extended object. It defines

the width of a pixel’s projection on the de-

tector as the distance from the projections of

the centers of the pixel’s right and left edge

as illustrated in Figure 4.6. The red rectan-

gular area illustrates the footprint function,

which determines how the value of the image

pixel prorates beyond the detector pixels in

an analog way as for the trapezoid function

AWP in Section 4.3.

image pixel

detector pixels
extended projection

(inverted grayscale)

Figure 4.6.: A schematic of the distance-

driven projector treating each pixel not as

square anymore, but still as an extended ob-

ject. Its rectangular footprint function is

represented by the red area.

The DDP is considerably faster than the AWP.

Depending on the accuracy of calculation

and the direction of the projection it gains

a factor of 1.3 - 1.7 in speed (which is 1.5 -

2.4 slower than the PDP) on CPUs1. Aston-

ishingly for calculations on a GPU (Graphics

Processing Unit) the DDP forwardprojector is

even able to outperform the PDP. More about

the transfer of tomographic projectors to the

GPU can be found in Section 5.4.

But also here, in contrast to the AWP and the

MCP, unfortunately Moiré artifacts show up

at those critical angles that were already dis-

cussed for the PDP in Section 4.1. The er-

ror is even greater than for the PDPlin, as one

can see in Figure 4.9 on page 31. The rea-

son is most likely that the width of a pixel’s

projection at almost all angles is smaller than

the pixel’s side length and thus than a pixel

on the detector (sinogram (d) in Figure 4.7

on page 28). Consequentially the values of

super-imposed pixels sum up even more lo-

cally than for the PDPlin, where projection ag-

glomerations at least distribute over the two

linearly interpolated pixels.

1The terms of the corresponding test can be found in
the box on the following page.

25

Area	  Weighted	  	  

Distance	  Driven	  

Pixel	  Driven	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Forward	  /	  Backward	  Projector	  

18	  

4. Overview of available Tomographic Projectors

snippet of the

occupied detector pixels

image pixels

(inverted grayscale)

Figure 4.2.: A visualization of the origin of the

Moiré patterns in the sinogram for projec-

tions with the PDPnn.

Because of the slightly different pitch of the

detector pixels and the agglomerations of

image pixel projections for equal image and

detector pixel size there are alternate do-

mains on the detector, where one or respec-

tively two of these agglomerations end up.

DDPPDPcubPDPlinPDPnn

0° 180°90°45° 135°

3.5⇥

Figure 4.3.: The sinogram of the Shepp-Logan

phantom created with the PDPnn, using

equal pixel size for image and detector.

To emphasize the Moiré patterns at 45° the

region around this angle has been enlarged

together with the corresponding areas pro-

duced by the other PDP interpolation ap-

proaches and for the DDP (which will be

discussed in Section 4.4).
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4.1. The pixel-driven
projector

Visualized in Figure 4.1, the Pixel-Driven Pro-

jector (PDP) reduces each pixel to its central

point, projects it to the detector and deter-

mines the fractions by which the surround-

ing pixels account for this spot in either linear

(PDPlin), cubic (PDPcub) or nearest-neighbor

interpolation (PDPnn) [Pet81, ZGH94, DB02,

DB04].

nearest-neighbor,

cubic interpolationlinear, and

image pixel

detector pixels

(inverted grayscale)

Figure 4.1.: A schematic of the pixel-driven

projector treating each pixel as one point

and interpolating between the detector pix-

els.

In this projector schematic and also in the

following ones, the ratio of the image to

the detector pixel size is greater than one to

highlight the functional principle.

For the PDP and also for all the other pro-

jectors discussed in this chapter, a forward-

projection means that the involved detector

pixels prorate the value of the image pixel,

whereas for the backprojection, the values of

the detector pixels sum up pro-rata in the im-

age pixel. The only difference is whether the

detector or the image pixel accumulates the

new value. Looping over all pixels of the im-

age and summing up all detector entries for

a forward-, or all image entries for a backpro-

jection, the sinogram, or the image, respec-

tively, emerges from a further loop over all

angles.

The main advantage of this simply designed

projector compared to the others, is speed.

As can be seen in Section 4.5, it outperforms

all the others by at least a factor of 1.5 for pro-

jections on standard CPUs1.

But on the other hand, there are big problems

at certain angles, namely those where lots of

projections end on the same detector spots.

Especially for the angles 0°, 45°, 90° and so

on, many pixel centers line up one after an-

other in the projection. If the pitch of the de-

tector pixels does not equal the pitch of these

projection agglomerations, a Moiré effect de-

velops in the sinogram, as visualized in Fig-

ure 4.2 on the following page. One can nicely

distinguish two types of domains: darker

ones, into which only one agglomeration falls

per pixel and brighter ones, where two ag-

glomerations sum up in each case. Because

of this bad behavior the nearest-neighbor in-

terpolation will not be considered in any fur-

ther speed or quality considerations.

However, if the image pixel size equals the de-

tector pixel size, exactly one agglomeration

falls into every detector pixel for multiples of

90° and that is why the effect disappears at

these angles, as shown at the example in Fig-

ure 4.3 on the next page. If the image pixel

size were
p

2 times the projector pixel size,

the Moiré patterns would disappear in the

same way for the diagonal angles.

1The terms of the corresponding test can be found in
the box on page 26.
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see Section 4.5 for further details). Regarding

the difference in complexity, the extra time is

still quite moderate.

4.4. The distance-driven
projector

The Distance-Driven Projector (DDP) has

been suggested by B. De Man and S. Basu in

2002 [DB02, DB04]. It does not treat each

pixel as square anymore, but still approxi-

mates it as an extended object. It defines

the width of a pixel’s projection on the de-

tector as the distance from the projections of

the centers of the pixel’s right and left edge

as illustrated in Figure 4.6. The red rectan-

gular area illustrates the footprint function,

which determines how the value of the image

pixel prorates beyond the detector pixels in

an analog way as for the trapezoid function

AWP in Section 4.3.

image pixel

detector pixels
extended projection

(inverted grayscale)

Figure 4.6.: A schematic of the distance-

driven projector treating each pixel not as

square anymore, but still as an extended ob-

ject. Its rectangular footprint function is

represented by the red area.

The DDP is considerably faster than the AWP.

Depending on the accuracy of calculation

and the direction of the projection it gains

a factor of 1.3 - 1.7 in speed (which is 1.5 -

2.4 slower than the PDP) on CPUs1. Aston-

ishingly for calculations on a GPU (Graphics

Processing Unit) the DDP forwardprojector is

even able to outperform the PDP. More about

the transfer of tomographic projectors to the

GPU can be found in Section 5.4.

But also here, in contrast to the AWP and the

MCP, unfortunately Moiré artifacts show up

at those critical angles that were already dis-

cussed for the PDP in Section 4.1. The er-

ror is even greater than for the PDPlin, as one

can see in Figure 4.9 on page 31. The rea-

son is most likely that the width of a pixel’s

projection at almost all angles is smaller than

the pixel’s side length and thus than a pixel

on the detector (sinogram (d) in Figure 4.7

on page 28). Consequentially the values of

super-imposed pixels sum up even more lo-

cally than for the PDPlin, where projection ag-

glomerations at least distribute over the two

linearly interpolated pixels.

1The terms of the corresponding test can be found in
the box on the following page.
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P(f | g)∝P(g | f) P(f) 

Reconstruc4on	  via	  Likelihood	  Maximiza4on	  (LM)	  /	  	  
Bayesian	  (MAP)	  
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achieve	  low	  

noise	  

Loop	  to	  
achieve	  

consistency	  
with	  raw	  data	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Noise	  penalty	  model	  

22	  

With	  Regulariza4on	   Without	  Regulariza4on	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Noise	  penalty	  model	  

23	  
A	  –	  FBP	  B	  –	  SPS-‐PML	  (no	  regulariza4on)	  	  C	  -‐	  SPS-‐PML	  (strong	  regulariza4on)	  D	  -‐	  SPS-‐PML	  (low	  regulariza4on)	  	  

A	  

B	  

C	  

D	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Itera4ve	  Reconstruc4on	  –	  The	  recipe	  makes	  the	  difference	  	  
(Too	  …)	  Many	  Op4ons	  	  	  

24	  

Forward	  
Model	  Driven	  

Image	  
Proper-es	  

Sta-s-cal	  Models	  

ART	  

Regularized	  
ART	   PICCS	   Image	  	  

Restora-on	  

Image	  
Denoising	  

MAP	  

Penalized	  
Likelihood	   PWLS	  

Maximum	  
Likelihood	  
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Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Examples	  
Clinical	  &	  Industrial	  Examples	  

25	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

•  Peter	  B.	  Noël,	  Ph.D.	  	  

26	  

Power	  of	  Itera4ve	  Reconstruc4on	  
FBP	  reconstruc4on	   Itera4ve	  reconstruc4on	  

11.14	  mSv	   1.59	  mSv	  

Results - Healthy Liver Sample 

FBP	   MLIR	  +	  30%FBP	   MLIR	  

Results - Healthy Liver Sample 

FBP	   MLIR	  +	  30%FBP	   MLIR	  
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Results - Healthy Liver Sample 

FBP	   MLIR	  +	  30%FBP	   MLIR	  
Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

IR	  with	  Priors	  

30	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Len:	  added	  Gaussian	  Noise	  with	  
σ	  =	  0.3	  maximum	  value	  

MicroCT	  -‐-‐-‐	  Memory	  S4ck	  Example	  

•  Projec4on	  Size:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2048	  x	  2048	  px	  
•  Detector	  Pixel	  Size:	  	  	  	  	  	  	  	  	  34.00	  µm	  
•  Number	  of	  Projec4ons:	  	  4000	  

•  Voxel	  Size:	  	  12.14	  µm	  
•  FBP	  Filter:	  	  	  Ramlak	  

•  SIR	  number	  of	  Itera4ons:	  	  	  20	  
•  SIR	  Regulariza4on:	  	  	  	  	  	  	  	  	  	  	  	  	  	  Huber	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

FBP	  	   FBP	  

added	  noise	  to	  projec4ons	  
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Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

FBP	  	   SIR	  

added	  noise	  to	  projec4ons	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Concrete	  Sample	  

34	  

1	  mm	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Concrete	  Sample	  

35	  

FBP	  	   SIR	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Concrete	  Sample	  

36	  

FBP	  	   SIR	  
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Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Concrete	  Sample	  

37	  

FBP	  	   SIR	  

Image	  Reconstruc4on	  Group	  @	  Department	  of	  Radiology	  	  

Peter	  B.	  Noël,	  Ph.D.	  

Conclusion	  

•  Itera4ve	  Reconstruc4on	  offers:	  

•  Flexible	  image	  models,	  e.g.	  trajectories,	  number	  of	  projec4on	  

•  Discre4za4on	  of	  the	  problem	  

•  Computa4onal	  modeling	  of	  the	  imaging	  setup	  

•  Use	  of	  prior	  knowledge	  	  

…	  

	  

•  It	  is	  like	  cooking:	  it	  is	  all	  about	  the	  recipe…	  

Itera4ve	  Reconstruc4on	  a	  Powerful	  Tool	  

38	  
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