
18.12.13	
  

1	
  

Iterative CT reconstruction: from medical to industrial application.  

Peter B. Noël, Ph.D. 
 
Department of Radiology 
Technische Universität München 

Image	
  Reconstruc4on	
  Group	
  @	
  Department	
  of	
  Radiology	
  	
  

Peter	
  B.	
  Noël,	
  Ph.D.	
  

•  Peter	
  B.	
  Noël,	
  Ph.D.	
  	
  

2	
  

Power	
  of	
  Itera4ve	
  Reconstruc4on	
  
FBP	
  reconstruc4on	
   Itera4ve	
  reconstruc4on	
  

11.14	
  mSv	
   1.59	
  mSv	
  

Image	
  Reconstruc4on	
  Group	
  @	
  Department	
  of	
  Radiology	
  	
  

Peter	
  B.	
  Noël,	
  Ph.D.	
  

•  Peter	
  B.	
  Noël,	
  Ph.D.	
  	
  

3	
  

Power	
  of	
  Itera4ve	
  Reconstruc4on	
  
FBP	
  reconstruc4on	
   Itera4ve	
  reconstruc4on	
  

Image	
  Reconstruc4on	
  Group	
  @	
  Department	
  of	
  Radiology	
  	
  

Peter	
  B.	
  Noël,	
  Ph.D.	
  

Itera4ve	
  Reconstruc4on	
  
Popular	
  but	
  not	
  new	
  

4	
  

Quote	
   RA	
   Brooks,	
   G	
   Di	
   Chiro	
   -­‐	
  
Radiology,	
   1975:	
   „...	
   Itera-ve	
  
reconstruc-on	
   is	
   more	
   a2rac-ve	
  
when	
  the	
  number	
  of	
  views	
  is	
  limited,	
  
if	
   noise	
   is	
   significant ,	
   and	
   if	
  
addi4onal	
   factors,	
   eg,	
   gamma-­‐ray	
  
aQenua4on,	
   are	
   present.	
   For	
   these	
  
reasons,	
  itera4ve	
  methods	
  are	
  widely	
  
used	
  in	
  radioisotope	
  imaging.	
  ...“	
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Point	
  Samples	
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•  Advantage	
  Blobs:	
  Blobs	
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  same	
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  high	
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  imaging	
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4. Overview of available Tomographic Projectors

4.1. The pixel-driven
projector

Visualized in Figure 4.1, the Pixel-Driven Pro-

jector (PDP) reduces each pixel to its central

point, projects it to the detector and deter-

mines the fractions by which the surround-

ing pixels account for this spot in either linear

(PDPlin), cubic (PDPcub) or nearest-neighbor

interpolation (PDPnn) [Pet81, ZGH94, DB02,

DB04].

nearest-neighbor,

cubic interpolationlinear, and

image pixel

detector pixels

(inverted grayscale)

Figure 4.1.: A schematic of the pixel-driven

projector treating each pixel as one point

and interpolating between the detector pix-

els.

In this projector schematic and also in the

following ones, the ratio of the image to

the detector pixel size is greater than one to

highlight the functional principle.

For the PDP and also for all the other pro-

jectors discussed in this chapter, a forward-

projection means that the involved detector

pixels prorate the value of the image pixel,

whereas for the backprojection, the values of

the detector pixels sum up pro-rata in the im-

age pixel. The only difference is whether the

detector or the image pixel accumulates the

new value. Looping over all pixels of the im-

age and summing up all detector entries for

a forward-, or all image entries for a backpro-

jection, the sinogram, or the image, respec-

tively, emerges from a further loop over all

angles.

The main advantage of this simply designed

projector compared to the others, is speed.

As can be seen in Section 4.5, it outperforms

all the others by at least a factor of 1.5 for pro-

jections on standard CPUs1.

But on the other hand, there are big problems

at certain angles, namely those where lots of

projections end on the same detector spots.

Especially for the angles 0°, 45°, 90° and so

on, many pixel centers line up one after an-

other in the projection. If the pitch of the de-

tector pixels does not equal the pitch of these

projection agglomerations, a Moiré effect de-

velops in the sinogram, as visualized in Fig-

ure 4.2 on the following page. One can nicely

distinguish two types of domains: darker

ones, into which only one agglomeration falls

per pixel and brighter ones, where two ag-

glomerations sum up in each case. Because

of this bad behavior the nearest-neighbor in-

terpolation will not be considered in any fur-

ther speed or quality considerations.

However, if the image pixel size equals the de-

tector pixel size, exactly one agglomeration

falls into every detector pixel for multiples of

90° and that is why the effect disappears at

these angles, as shown at the example in Fig-

ure 4.3 on the next page. If the image pixel

size were
p

2 times the projector pixel size,

the Moiré patterns would disappear in the

same way for the diagonal angles.

1The terms of the corresponding test can be found in
the box on page 26.
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lates the exact projection of a square for each

pixel and thus considers perfectly its two-

dimensional shape.

image pixel

exact projection

detector pixels

(inverted grayscale)

r1st
r3rd r4th

r2nd

Figure 4.5.: A schematic of the area-weighted

projector. It respects the exact footprint

of the square-shaped image pixels. The

red area illustrates the trapezoid footprint

function.

Having the positions of the four corners of

a pixel on the detector, there has to be a

loop over all detector pixels between the first

and the last corner, which calculates the ap-

propriate weight according to the surface ra-

tio of the trapezoid falling into each detector

pixel. Mathematically, the trapezoid denotes

the surface under the footprint function

t (r ) =

8

>

>

>

>

<

>

>

>

>

:

h · r�r1st
r2nd�r1st

for r1st < r  r2nd

h for r2nd < r  r3rd

�h · r�r4th
r4th�r3rd

for r3rd < r  r4th

0 else

(4.1)

with h = 1/(r3rd� r1st),

where r is the spatial coordinate along the

detector and r1st to r4th are the projection

spots of the 1st to the 4th corner of the pixel

on the detector. The normalization h guar-

antees that the whole area below t (r ), or in

other words, the sum of all pixel weights, is

one. To reproduce the value for h given in

Equation 4.1 one has to take the symmetry

of the trapezoid into account that holds for

parallel-beam geometry and results in

r2nd� r1st = r4th� r3rd. (4.2)

In practice, the easiest way to get the corre-

sponding areas below the function, is to use

the integral function of the trapezoid

T (r ) =

rˆ
r1st

t (r 0)d r 0 = (4.3)

=
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1 r > r4th,

evaluate it at each detector pixel and subtract

the value of the previous evaluation.

The advantages of this kind of projector are

obvious: As it is designed to be the exact pro-

jection of a pixel, it produces less artifacts in

the reconstruction than other projectors, es-

pecially little noise and no problems at cer-

tain angles, as shown in Section 4.5. Further-

more, it serves as a great reference to check

the exactness of other projectors.

The price to pay for the exactness is a factor

of 2.6 - 3.2 in speed on standard CPUs1 (de-

pending on the computational accuracy and

whether it is a forward- or backprojection,

1The terms of the corresponding test can be found in
the box on page 26.
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see Section 4.5 for further details). Regarding

the difference in complexity, the extra time is

still quite moderate.

4.4. The distance-driven
projector

The Distance-Driven Projector (DDP) has

been suggested by B. De Man and S. Basu in

2002 [DB02, DB04]. It does not treat each

pixel as square anymore, but still approxi-

mates it as an extended object. It defines

the width of a pixel’s projection on the de-

tector as the distance from the projections of

the centers of the pixel’s right and left edge

as illustrated in Figure 4.6. The red rectan-

gular area illustrates the footprint function,

which determines how the value of the image

pixel prorates beyond the detector pixels in

an analog way as for the trapezoid function

AWP in Section 4.3.

image pixel

detector pixels
extended projection

(inverted grayscale)

Figure 4.6.: A schematic of the distance-

driven projector treating each pixel not as

square anymore, but still as an extended ob-

ject. Its rectangular footprint function is

represented by the red area.

The DDP is considerably faster than the AWP.

Depending on the accuracy of calculation

and the direction of the projection it gains

a factor of 1.3 - 1.7 in speed (which is 1.5 -

2.4 slower than the PDP) on CPUs1. Aston-

ishingly for calculations on a GPU (Graphics

Processing Unit) the DDP forwardprojector is

even able to outperform the PDP. More about

the transfer of tomographic projectors to the

GPU can be found in Section 5.4.

But also here, in contrast to the AWP and the

MCP, unfortunately Moiré artifacts show up

at those critical angles that were already dis-

cussed for the PDP in Section 4.1. The er-

ror is even greater than for the PDPlin, as one

can see in Figure 4.9 on page 31. The rea-

son is most likely that the width of a pixel’s

projection at almost all angles is smaller than

the pixel’s side length and thus than a pixel

on the detector (sinogram (d) in Figure 4.7

on page 28). Consequentially the values of

super-imposed pixels sum up even more lo-

cally than for the PDPlin, where projection ag-

glomerations at least distribute over the two

linearly interpolated pixels.

1The terms of the corresponding test can be found in
the box on the following page.
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snippet of the

occupied detector pixels

image pixels

(inverted grayscale)

Figure 4.2.: A visualization of the origin of the

Moiré patterns in the sinogram for projec-

tions with the PDPnn.

Because of the slightly different pitch of the

detector pixels and the agglomerations of

image pixel projections for equal image and

detector pixel size there are alternate do-

mains on the detector, where one or respec-

tively two of these agglomerations end up.

DDPPDPcubPDPlinPDPnn

0° 180°90°45° 135°

3.5⇥

Figure 4.3.: The sinogram of the Shepp-Logan

phantom created with the PDPnn, using

equal pixel size for image and detector.

To emphasize the Moiré patterns at 45° the

region around this angle has been enlarged

together with the corresponding areas pro-

duced by the other PDP interpolation ap-

proaches and for the DDP (which will be

discussed in Section 4.4).
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4.1. The pixel-driven
projector

Visualized in Figure 4.1, the Pixel-Driven Pro-

jector (PDP) reduces each pixel to its central

point, projects it to the detector and deter-

mines the fractions by which the surround-

ing pixels account for this spot in either linear

(PDPlin), cubic (PDPcub) or nearest-neighbor

interpolation (PDPnn) [Pet81, ZGH94, DB02,

DB04].

nearest-neighbor,

cubic interpolationlinear, and

image pixel

detector pixels

(inverted grayscale)

Figure 4.1.: A schematic of the pixel-driven

projector treating each pixel as one point

and interpolating between the detector pix-

els.

In this projector schematic and also in the

following ones, the ratio of the image to

the detector pixel size is greater than one to

highlight the functional principle.

For the PDP and also for all the other pro-

jectors discussed in this chapter, a forward-

projection means that the involved detector

pixels prorate the value of the image pixel,

whereas for the backprojection, the values of

the detector pixels sum up pro-rata in the im-

age pixel. The only difference is whether the

detector or the image pixel accumulates the

new value. Looping over all pixels of the im-

age and summing up all detector entries for

a forward-, or all image entries for a backpro-

jection, the sinogram, or the image, respec-

tively, emerges from a further loop over all

angles.

The main advantage of this simply designed

projector compared to the others, is speed.

As can be seen in Section 4.5, it outperforms

all the others by at least a factor of 1.5 for pro-

jections on standard CPUs1.

But on the other hand, there are big problems

at certain angles, namely those where lots of

projections end on the same detector spots.

Especially for the angles 0°, 45°, 90° and so

on, many pixel centers line up one after an-

other in the projection. If the pitch of the de-

tector pixels does not equal the pitch of these

projection agglomerations, a Moiré effect de-

velops in the sinogram, as visualized in Fig-

ure 4.2 on the following page. One can nicely

distinguish two types of domains: darker

ones, into which only one agglomeration falls

per pixel and brighter ones, where two ag-

glomerations sum up in each case. Because

of this bad behavior the nearest-neighbor in-

terpolation will not be considered in any fur-

ther speed or quality considerations.

However, if the image pixel size equals the de-

tector pixel size, exactly one agglomeration

falls into every detector pixel for multiples of

90° and that is why the effect disappears at

these angles, as shown at the example in Fig-

ure 4.3 on the next page. If the image pixel

size were
p

2 times the projector pixel size,

the Moiré patterns would disappear in the

same way for the diagonal angles.

1The terms of the corresponding test can be found in
the box on page 26.
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see Section 4.5 for further details). Regarding

the difference in complexity, the extra time is

still quite moderate.

4.4. The distance-driven
projector

The Distance-Driven Projector (DDP) has

been suggested by B. De Man and S. Basu in

2002 [DB02, DB04]. It does not treat each

pixel as square anymore, but still approxi-

mates it as an extended object. It defines

the width of a pixel’s projection on the de-

tector as the distance from the projections of

the centers of the pixel’s right and left edge

as illustrated in Figure 4.6. The red rectan-

gular area illustrates the footprint function,

which determines how the value of the image

pixel prorates beyond the detector pixels in

an analog way as for the trapezoid function

AWP in Section 4.3.

image pixel

detector pixels
extended projection

(inverted grayscale)

Figure 4.6.: A schematic of the distance-

driven projector treating each pixel not as

square anymore, but still as an extended ob-

ject. Its rectangular footprint function is

represented by the red area.

The DDP is considerably faster than the AWP.

Depending on the accuracy of calculation

and the direction of the projection it gains

a factor of 1.3 - 1.7 in speed (which is 1.5 -

2.4 slower than the PDP) on CPUs1. Aston-

ishingly for calculations on a GPU (Graphics

Processing Unit) the DDP forwardprojector is

even able to outperform the PDP. More about

the transfer of tomographic projectors to the

GPU can be found in Section 5.4.

But also here, in contrast to the AWP and the

MCP, unfortunately Moiré artifacts show up

at those critical angles that were already dis-

cussed for the PDP in Section 4.1. The er-

ror is even greater than for the PDPlin, as one

can see in Figure 4.9 on page 31. The rea-

son is most likely that the width of a pixel’s

projection at almost all angles is smaller than

the pixel’s side length and thus than a pixel

on the detector (sinogram (d) in Figure 4.7

on page 28). Consequentially the values of

super-imposed pixels sum up even more lo-

cally than for the PDPlin, where projection ag-

glomerations at least distribute over the two

linearly interpolated pixels.

1The terms of the corresponding test can be found in
the box on the following page.
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Simulated	
  projec-on	
  

Measured	
  projec-on	
  

Discrepancy	
  

Back-­‐projec-on	
  

Forward	
  
projec-on	
  

Accurate	
  
system	
  model	
  

Sta-s-cal	
  weigh-ng	
  

Roughness	
  
measure	
  

Adap-ve	
  
smoothing	
  

Image	
  
update	
  

Loop	
  to	
  
achieve	
  low	
  

noise	
  

Loop	
  to	
  
achieve	
  

consistency	
  
with	
  raw	
  data	
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With	
  Regulariza4on	
   Without	
  Regulariza4on	
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  of	
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Noise	
  penalty	
  model	
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A	
  –	
  FBP	
  B	
  –	
  SPS-­‐PML	
  (no	
  regulariza4on)	
  	
  C	
  -­‐	
  SPS-­‐PML	
  (strong	
  regulariza4on)	
  D	
  -­‐	
  SPS-­‐PML	
  (low	
  regulariza4on)	
  	
  

A	
  

B	
  

C	
  

D	
  

Image	
  Reconstruc4on	
  Group	
  @	
  Department	
  of	
  Radiology	
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  B.	
  Noël,	
  Ph.D.	
  

Itera4ve	
  Reconstruc4on	
  –	
  The	
  recipe	
  makes	
  the	
  difference	
  	
  
(Too	
  …)	
  Many	
  Op4ons	
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Forward	
  
Model	
  Driven	
  

Image	
  
Proper-es	
  

Sta-s-cal	
  Models	
  

ART	
  

Regularized	
  
ART	
   PICCS	
   Image	
  	
  

Restora-on	
  

Image	
  
Denoising	
  

MAP	
  

Penalized	
  
Likelihood	
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Maximum	
  
Likelihood	
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Power	
  of	
  Itera4ve	
  Reconstruc4on	
  
FBP	
  reconstruc4on	
   Itera4ve	
  reconstruc4on	
  

11.14	
  mSv	
   1.59	
  mSv	
  

Results - Healthy Liver Sample 

FBP	
   MLIR	
  +	
  30%FBP	
   MLIR	
  

Results - Healthy Liver Sample 

FBP	
   MLIR	
  +	
  30%FBP	
   MLIR	
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Results - Healthy Liver Sample 

FBP	
   MLIR	
  +	
  30%FBP	
   MLIR	
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IR	
  with	
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  Reconstruc4on	
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  B.	
  Noël,	
  Ph.D.	
  

Len:	
  added	
  Gaussian	
  Noise	
  with	
  
σ	
  =	
  0.3	
  maximum	
  value	
  

MicroCT	
  -­‐-­‐-­‐	
  Memory	
  S4ck	
  Example	
  

•  Projec4on	
  Size:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2048	
  x	
  2048	
  px	
  
•  Detector	
  Pixel	
  Size:	
  	
  	
  	
  	
  	
  	
  	
  	
  34.00	
  µm	
  
•  Number	
  of	
  Projec4ons:	
  	
  4000	
  

•  Voxel	
  Size:	
  	
  12.14	
  µm	
  
•  FBP	
  Filter:	
  	
  	
  Ramlak	
  

•  SIR	
  number	
  of	
  Itera4ons:	
  	
  	
  20	
  
•  SIR	
  Regulariza4on:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Huber	
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  Reconstruc4on	
  Group	
  @	
  Department	
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FBP	
  	
   FBP	
  

added	
  noise	
  to	
  projec4ons	
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FBP	
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FBP	
  	
   SIR	
  

Image	
  Reconstruc4on	
  Group	
  @	
  Department	
  of	
  Radiology	
  	
  

Peter	
  B.	
  Noël,	
  Ph.D.	
  

Conclusion	
  

•  Itera4ve	
  Reconstruc4on	
  offers:	
  

•  Flexible	
  image	
  models,	
  e.g.	
  trajectories,	
  number	
  of	
  projec4on	
  

•  Discre4za4on	
  of	
  the	
  problem	
  

•  Computa4onal	
  modeling	
  of	
  the	
  imaging	
  setup	
  

•  Use	
  of	
  prior	
  knowledge	
  	
  

…	
  

	
  

•  It	
  is	
  like	
  cooking:	
  it	
  is	
  all	
  about	
  the	
  recipe…	
  

Itera4ve	
  Reconstruc4on	
  a	
  Powerful	
  Tool	
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