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Power of Iterative Reconstruction

Iterative CT reconstruction: from medical to industrial application.

Peter B. Noél, Ph.D.

Department of Radiology
Technische Universitat Miinchen

Popular but not new

Quote RA Brooks, G Di Chiro -
Radiology, 1975: ,... lterative
reconstruction is more attractive
when the number of views is limited,
if noise is significant, and if

additional factors, eg, gamma-ray

attenuation, are present. For these

reasons, iterative methods are widely

used in radioisotope imaging. ...”
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Two Major Factors: Dosis and Speed What is the idea behind IR?
PCESEESEESEEEEEEEEEEEEE 1
1
H v
—_ —— <--

How can we make the image better?
* Geta better match to the data

Requires a data model

Enforce desirable image properties e CUSPEREES
Encourage smoothness, edges, etc.

Need a measure of , better”
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Design of an Iterative Reconstruction

Intermediate image

It is like cooking: it is all about the recipe...
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Voxels

Advantage Blobs: Blobs projection to same 2D representation

Continuous Discrete Advantage Voxels: For high resolution imaging voxels show less artifacts
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System Model
Projecting a Sphere
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System Model
Projecting a Sphere
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Statistical Noise Model
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Statistical weighting

Statistical Noise Model

P(f| @)=P(g | ) P(f)

Most probable solution

P

measurements

Image space

Reconstruction via Likelihood Maximization (LM) /
Bayesian (MAP)
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Noise penalty model
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Clinical & Industrial Examples
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Power of Iterative Reconstruction

Iterative reconstruction

11.14 mSv 1.59 mSv

MLIR + 30%FBP P MLIR + 30%FBP




MLIR + 30
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Projection Size: 2048 x 2048 px
Detector Pixel Size: 34.00 pm
Number of Projections: 4000

Voxel Size: 12.14 um
FBP Filter: Ramlak

SIR number of Iterations: 20
SIR Regularization: Huber
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Left: added Gaussian Noise with
o =0.3 maximum value
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Concrete Sample
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Conclusion

Iterative Reconstruction a Powerful Tool

* lterative Reconstruction offers:
* Flexible image models, e.g. trajectories, number of projection
* Discretization of the problem
* Computational modeling of the imaging setup

* Use of prior knowledge

« Itis like cooking: it is all about the recipe...
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