

Robust Design: Reducing Variation and its Impact

Design → Production → Measurement → Reliability

Thomas J. Howard Head of Robust Design Group

 $(EIv'')'' = q - \rho A \ddot{v} a^{a} \delta a^{b} \delta a^{a} \delta a^{a} \delta a^{a} \delta a^{a} \delta a^{b} \delta a^{a} \delta a^{$

DTU Mechanical Engineering

Department of Mechanical Engineering

Exemplifying Robust Design Functional Performance: Chair must not rock more than 2 mm

Six Theta® Robust Design

Six Theta[®] Robust Design: Design Clarity

Parts have intended constraining surfaces, but too many potential and unnecessary constraining surfaces lead to a lack of predictability in terms of how the part will actually function.

The intended and actual number of constraining surfaces can be visualised in a cockpit, thereby providing an overview of the current state of sensitivity in the design.

Impact of ambiguous interfaces:

- Variation in performance
- Unclear tolerance chains
- Unclear load transmission

Six Theta[®] Robust Design Methods

Six Theta[®] Robust Design Indicators

In general Robust Design focusses on the Design phase removing reliability issues before production or measurement. However, some nasties sneak through from time to time, where CT scanning could assist.

GM Ignition Switch Recall

- fine of \$35 million
- recall of 2.6 million vehicles
- death of at least
 13 people.

8

Ignition Swtich Mode of Action

START

CRANK

ACC

Locking switch positions

ISoR

The position of modes "*ON*" (or Run) and "*Accessory*" are defined by notches in the switch plate. A plunger, forced by a spring, extends into the notches, intending to hold the mechnism stable until the key is turned.

Slipping/Bouncing

9

McSwain Engineering CT Scans

McSwain Engineering CT Scans

Failed Product (2005)

New Version (2008)

2005 – 3.68mm

2005 Chevrolet Cobalt Ignition Switch

2006 – 3.71mm

2006 Chevrolet Cobalt Ignition Switch

2007 – 3.95mm

2007 Chevrolet Cobalt Ignition Switch (August 2006 Build Date)

MDP_A-E004

2007 – 4.77mm

2007 Chevrolet Cobalt Ignition Switch (March 2007 Build Date)

2008 – 5.08mm

2008 Chevrolet Cobalt Ignition Switch

MDP_A-E010

The new chevy – 8.00mm

New Chevrolet Cobalt Ignition Switch Service Replacement Part

McSWAIN ENGINEERING, INC.

PROJECT:

General Motors Ignition Switch

Exemplar Chevrolet Cobalt Switch Detent Plungers

Minimal constraints theory!!

LONG contact surfaces

Specified nominal values

Measured variation of example ignition switches

Dimensions of components

Dimensions of assembled device

Scene

McSwain Engineering CT Scans

CT Scanning as a great tool for Forensic Engineering to uncover sources of variation...

...when the product is not robust enough!

GMσD

Global Manufacturing Variation Database

Horizon 2020 application

Factories of the Future (FoF-14-2015)

- Topic: Integrated design and management of production machinery and processes
- Deadline: Feb 2015
- Duration: 4years

$$(EIv'')'' = q - \rho A \ddot{v}_{a} \varepsilon \qquad (EIv'')'' = q - \rho A \ddot{v}_{a} \varepsilon$$

DTU Mechanical Engineering

Department of Mechanical Engineering

Challenges in Industrial Practice

Aim – Design to Process Capabilities (DtPC)

PMoD Structure (Local Manufacturing Variation Database)

GMoD Structure (Global Manufacturing Variation Database)

Questions?

Technical University of DenmarkThomas J. HowardHead or Robust Design GroupEmail: thow@mek.dtu.dkTel: 0045 45 25 47 41Skype: thomas-james-howard