

The future meat plant FOURTH INDUSTRIAL REVOLUTION – WHAT'S IN IT FOR YOU?

Holger Dirac, Director Measurement Systems DMRI, pahd@dti.dk

FOURTH INDUSTRIAL REVOLUTION – WHAT'S IN IT FOR YOU?

The future meat plant

- The need for handling many small volume product variants is increasing.
- Digitalizing and using data across the value chain to optimize logistics and production processes and exploiting synergies presents critical opportunities. But how do we realize them?
- Is line production still the future slaughterhouse production paradigm?

Industry 4.0 (Wikipedia)

A cyber-physical system (CPS) is a mechanism controlled or monitored by computer-based algorithms, tightly integrated with the internet and its users. In cyber-physical systems, *physical and* software components are deeply intertwined, each operating on different spatial and temporal scales? eAfrenue/OUIstSeffOUS? modalities, and interacting with each other in a myriad of ways that change with context.^[1] Examples of CPS include smart grid, autonomous automobile systems, medical monitoring, process control systems, robotics systems, and automatic pilot avionics.^[2]

Industry 4.0 (for butchers)

- Most information is digitalized and accessible (also along the value chain).
- Machines, raw material and products "talk" together.
 - Access to information about history, present state, and predictions about the future.
 - Automation of not just individual processes but also of how to combine and adapt processes (also to small series), i.e. automated/assisted:
 - Production planning.

- Contingency/error management.
- Management of variation/small series.

Cyber Physical Systems

The future meat plant It's all about BETTER BUSINESS

- How can we increase profit?
 - Increase prices
 - Decrease costs
 - Increase volume

DANISH MEAT RESEARCH INSTITUTE

Increasing prices How are we doing?

• Not so well the last 30 years!

DANISH MEAT RESEARCH INSTITUTE

© Danmarks Statistik og Den Store Danske

Data from the Danish Agriculture & Food Council

More than 300 mio € saved every year

Market segmentation Same same but different

Enters the "Craft Beer"

Authenticity, heritage, locality, craftsmanship

Industrial "Craft beer"

Mega trends Major present and future challenges

How to increase prices?

Increasing the perceived value:

- Market segmentation: Let affluent/willing costumers pay according to their value perception.
- Branding & Story telling (the craft beer analogy): Farmer and provenance, animal welfare, food safety, quality, socially sustainable workplace.

How to increase prices?

- The challenges. Segmentation, Branding & Story telling require:
 - B2C business models (more direct market access/impact, B2B tends to be price driven).
 - More complex logistics: More product variants, smaller product series, more detailed distribution.
 - Documentation of claims (with a brand comes potential brand damage)
 - Traceability.
 - Objective an communicative parameters for: Animal welfare, food safety, and quality.

Industry 4.0 technologies for

- More complex logistics: More product variants, smaller product series, more detailed distribution
- Horizontal integration: Costumer definition of product!

Industry 4.0 technologies for

- Documentation of claims (with a brand comes potential brand damage)
 - Traceability and documentation (from pig to pack (to consumer)).
 - Objective an communicative parameters for: Animal welfare, food safety, and quality.

Decreasing cost

How are we doing?

- Pretty well historically.
- But is there still room for more efficiency?

Decreasing cost New paradigms?

Objective

Value

Decreasing cost Maintain yield (of high value products)!!!

Raw material 75%

COST INCREMENT	
Administration	1%
Sale + distribution	3%
Depreciation + financial costs	5%
Different indirect costs	6%
Packing material	2%
Labour costs	8%
TOTAL COST INCREMENT	25%

Finished products 100%

New paradigms? Fewer but bigger plants running 24/7

- Why?
 - Less fixed cost
 - Fewer building plots and buildings
 - Better utilization of capital equipment
- Will require (Industry 4.0 technologies for):
 - More automation (labor cost nightshift)
 - Cleaning in Place (CIP) contained cells
 - Flexibility and redundancy in production
 - Scheduled maintenance

New paradigms? More streamlined plants

- Less handling. No buffers. Direct from:
 - Truck to stunner.
 - FIFO in equalizing chill room.
 - Cutting to boning to packaging.
- But maintaining:
 - Optimum usage of carcasses.
 - Product/market diversity.
 - And even more and smaller product series.

New paradigms? More streamlined plants

- Less handling. No buffers.
- But maintaining: Optimum usage of carcasses and Product/market diversity.
- Will require Industry 4.0 technologies for
 - Measurement
 - Traceability
 - Automatic sorting
 - Flexible smart production (automatic and manual)

A new production paradigm. What do we need?

Increasing product price:

- More product variants, smaller product series.
- Traceability and documentation (from pig to pack (to consumer)).

24/7:

- More automation (labor cost nightshift)
- Cleaning in Place (CIP) contained cells
- Flexibility and redundancy in production
- Scheduled maintenance

More streamlined plants:

- Traceability
- Automatic sorting
- Flexible smart production (automatic and manual)

New paradigms: Flexible automatic production Are the smart robots coming?

Potential benefits of Redundant robot cell production paradigm

DANISH MEAT RESEARCH INSTITUTE

- The industrial robot is available, stable, reasonably affordable and flexible (planning and tooling).
- Reduced time for transport.
- Fewer complete production stops and room for CIP and scheduled maintenance.

Will we save transport time with the robot cell?

Current draw chain process	Sec.
Process time	6
Transport time	4
Total time pr. process	10
Robot cell	
Process time	6
Tool change time	3
Transport time	4
Number of processes	4
Total time pr. process	10

Robot cell redundancy: Fewer production stops

- Two lines equals full capacity (= 1)
- 2 x 6 = 12 cells
- Each circle represent a cell with four processes per cell

- One cell (the green processes) needs service/cleaning/reparations
- What do we do?

Robot cell redundancy

Challenges for robot cell production paradigm

- Will they be able to do boning?
 - Better yields?
 - New ways to cut and bone?
 - The industrial robot is available, stable and affordable. But how about:
 - The tools?
 - The speed?
 - The footprint?
- Reduce time used for transport:
 - Many operations in each cell.
 - Fast tool changing.
 - Fast transit between cells.
- Fewer complete production stops and room for scheduled cleaning and maintenance:
 - More redundancy.
 - Flexibility of cell utilization: Many different tools and fast change of tasks in each cell.
 - Inexpensive tooling (or investment will be too high).
 - Complex planning task, especially in contingency situations: IT planning tools.

The future Industry 4.0 meat plant The core technologies

- Digital twin
- Online 3D measurement (CT).
- Human-data-machine interaction (AR).
- Hyper flexible smart robots (cells and co-worker) and inexpensive tools.
- Complete traceability from pig to pack.

Digital twin

- Design and commissioning.
- Production planning.
- Forecasting and contingency management.
- Maintenance.

Digital twin Valid data for optimizing PM

DANISH MEAT RESEARCH INSTITUTE

Digital revolution Digital production - Optimum utilization

Online 3D measurement (CT)

Reconstruction: 4 sec; Picture analysis 2.5 sec; 600 products/hour; 17 slice helix; GPU picture generator

Measure and control

Ì DANISH MEAT RESEARCH INSTITUTE

Augmented Reality (AR) Communication of 3D information

Robots as colleagues

Moving stock around

Supervising the robot

Working together

Complete traceability From pig to pack

11 21-11

Complete traceability From pig to pack?

DANISH MEAT RESEARCH INSTITUTE

Industry 4.0 (for butchers)

- Most information is digitalized and accessible (also along the value chain).
- Machines, raw material and products "talk" together.
 - Access to information about history, present state, and predictions about the future.
 - Automation of not just individual processes but also of how to combine and adapt processes (also to small series), i.e. automated/assisted:
 - Production planning.

- Contingency/error management.
- Management of variation/small series.

Cyber Physical Systems

Thank you for your attention!

