

NEWSLETTER DTI TRIBOLOGY CENTRE

June 2018

50 μ m thick PVD Al₂O₃ for next generation superconducting magnets at CERN

At CERN, the next generation of superconducting magnets is under development. In the prototype, which is currently being assembled, a PVD Al₂O₂ coating, developed and produced by the Tribology Centre at Danish Technological Institute, plays an important role. The superconducting magnet consists of bundles of superconducting Nb₂Sn wires, which are separated by metal spacers with electrically insulating surfaces. The electrical insulation of the surface is obtained via a 50 μ m thick PVD Al₂O₂ coating. In addition to being electrically insulating, the Al₂O₂ coating is capable of withstanding several thermal stress cycles involving cooling to operating conditions at -270 °C and heating to 650 °C without delamination.

The Al₂O₃ coating delivered to CERN is an extremely thick version of the so-called low-temperature Al₂O₃ coating provided by the Tribology Centre. The low-temperature Al₂O₃ coating is produced at a deposition temperature of 250 °C, which makes it applicable to a wide range of substrates. It has an XRD-amorphous structure and a hardness of 9 GPa, which is sufficient for most applications. However, for applications involving severe stresses, the Tribology Centre recommends a high-temperature Al_2O_3 coating, which is deposited at 550 °C. The high deposition temperature gives rise to a hardness of 19 GPa due to the formation of γ - Al_2O_3 crystallites. Both the low- and high-temperature Al_2O_3 coatings are deposited with a TiAIN adhesion layer, as seen in the cross-sectional SEM image, below.

In general, Al₂O₃ coatings are well suited as electrical insulators – especially in applications where electric insulation is needed in mechanical contacts. In addition, different industrial segments apply Al₂O₃ coatings as an inert non-stick coating to avoid seizure of spacers and holders during welding, sintering, etc.

XRD pattern of the coating. Low temperature version (red) and high temperature version (blue) revealing the presence of γ -Al₂O₃.

	Low-temperature Al ₂ O ₃	High-temperature Al ₂ O ₃
Deposition temperature	250 °C	550 °C
Hardness	9 GPa	19 GPa
Thickness	Typically 1-5 μm	Typically 1-5 μm
Microstructure	amorphous	γ-Al ₂ O ₃
Chemically inert	Not in alkalides	Yes

For more information, please contact

Tribology Centre Kongsvang Allé 29 DK-8000 Aarhus C Tel. +45 72 20 15 99 Mail: tribo@teknologisk.dk www.dti.dk