

Natural Refrigerants in HVAC: Pathway to a Sustainable Future

Ilana Koegelenberg, shecco

Growing market, Growing problem

The HVAC&R market today...

- "Current cooling technologies and practices are a substantial and growing contributor to climate change"
 because of direct AND indirect emissions
- Estimated 4.8bn new units of cooling equipment will be sold globally between 2019 and 2030
- Annual sales will hit 460m units by 2030 (336m in 2018)
- 62% of cooling demand from residential sector

The Cooling Imperative Forecasting the size and source of future cooling demand

Sponsored by KIGALI

23-24/06/2020 - Online

HVAC's share over Refrigeration

Sub-sector sales as a percentage of total sales (2018)

AC accounts for more than 62% of cooling market

Source: P&S Intelligence, Green Cooling Initiative, EIU analysis.

#GoNatRefs

Future growth of HVAC

Cooling sales: Average annual growth rate by sub-sector (2018-2030) (a)

Rapid growth expected for commercial and industrial HVAC

(a) As measured by compound annual growth rates. Source: EIU analysis.

23-24/06/2020 - Online

HVAC's HFC share

UNEP2020: AC accounts for 65% of the HFC market

What can we do?

"If the world is to scale up access to cooling without exacerbating current levels of emissions, policymakers, companies and individuals must **transition** to more **efficient climate-friendly** models."

- 1. Reduce the need for cooling
- 2. Shift to climate-friendly tech with lower emissions
- 3. Improve efficiency of cooling

The Cooling Imperative Forecasting the size and source of future cooling demand

Why do refrigerants matter?

Source: World Meteorological Organization, United Nations Environment Programme, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, European Commission, Xu et al (2013), Velders (2015).

Refrigerants: What's the alternative?

Low-GWP HFCs such as R32?

- GWP over 20 years: 2,330

HFOs such as R1234yf?

- TFAs could cause acid rain

Natural refrigerants?

- Only long-term, future-proof solution

Residential/ domestic solutions

HCs for room air conditioning (R290)

China:

- 18x RAC production lines converted to R290;
- Production capacity: 4.5 million units/year
- CHEAA expects 300,000 units sold by Aug 2020

India:

 Godrej sold 650,000+ R290 split type RAC systems (Sep 2019)

Other:

- Egypt: 8x production lines converted
- Pakistan converted an R22 production line

Suitable replacement for unsustainable split units

Residential HVAC: portable

- Europe has been moving towards **R290 in portable AC**
- EU F-Gas Regulation bans the use of HFCs with GWP > 150 in portable AC as of 2020
- At least 8 manufacturers
- Estimated number of HC-based portable AC units in Europe: 200,000+
- All new products expected to use R290 within 2 years

Residential: Hydrocarbons blend

- Australia: Terry Hills
- Old system: R22 splits
- New system: HC ducted packaged units
- Refrigerant blend: 35% propane, >60% propylene, <5% isobutane,
 <1% butane
- Energy savings: estimated 65% savings
- **Refrigerant charge:** 50% less refrigerant than before

Residential: NO refrigerants?

- Saudi Arabia: Mina Valley tent city
- **New system**: 50,000x evaporative coolers
- Energy savings: 35%
- Maintenance costs: 80% less than ducted reverse cycle AC
- GHG emissions: 80% less

Commercial and industrial solutions

Low-charge ammonia – a growing trend

Commercial: LC ammonia chiller

- Australia: Logan City Council Admin Centre
- Old system: 2x R22 chillers
- **New system**: 2x low-charge ammonia chillers
- **COP improvement**: from 2.52 to 3.83
- Annual CO₂e reduction: 680 tons
- Annual cost saving: \$140,000

Commercial HVAC: R290 splits

- Ghana: Various commercial buildings
- Old systems: R22 splits
- **New systems**: R290 ductless single-split AC
- Energy savings: 700kWh/year/unit
- GHG emissions: 42% lower

COOLING CAPACITY	5.3 kW (18,000 BTU/h) Fixed speed		
Compared models	R-410A Baseline AC ¹	R-22 Baseline AC ²	MIDEA All Easy
Refrigerant Type	R-410A	R-22	R-290
GWP	1,923	1,810	3
lnitial refrigerant charge (kg)	1.0	1.0	0.38
EER (W/W)	3.0	2.8	3.5
Electricity consumption kWh/year	3,392	3,63 4	2,907
Total GHG emissions (tCO ₂ eq) ³	28.3	29.2	17

 Table 1: Comparison between split units with different refrigerants.

Commercial: R718 (water) chiller

- **Germany:** Combitherm Facilities commercial offices
- New system: R718 chiller with solar power
- Energy savings: 40% over HFC solution
- **Solar**: AC system only uses 30% of solar generated
- CO₂e emissions: 0
- Maintenance costs offset by energy supplied into grid

ਫ਼ਿਟੋਂਡੈਂ≉ #GoNatRefs

Data center: R744

- Canada: Telus data center
- Old system: R22 DX units
- New system: R744 AC units
- Energy savings: 60% reduction
- Payback period: 2 years

Industrial HVAC: R290 chiller

- Indonesia: PT Phapros Pharma factory
- Old system: R22 chillers
- New systems: R290 chillers
- **COP improvement**: 1.45 to 4.3
- **Electricity consumption**: 54% reduction
- **CO₂e emissions**: mitigates 560 tons/year

Type of System	R-290 Chillers	Old Chillers (R-22)
Cooling Capacity, Manufacture Specifications [kW]	231.9	643
Measured Cooling Capacity [kW]	239.5	175
Refrigerant Type (GWP value)	R290 (GWP=3)	R22 (GWP=1810)
Refrigerant charge [kg]	23	141.4
Measured COP [W/W]	4.30	1.45
Operation time period	Since 2018	1992 – 2017

Table 1: Comparison between the R-290 chillers and theold R-22 chiller.

Developments to watch

Mega trends in HVAC&R

1. Moving towards natural refrigerants

- Getting rid of harmful synthetics

2. Servitization

- Pay-per-use model

3. Digitalization

- Smarter systems

Cooling as a Service

- Scaling up clean and efficient cooling technologies
- Pay-per-service model: only pay for cooling used
- Solves issue of costly upfront payment/ CAPEX
- Solves issue of quality of technicians/ maintenance
- E-Summit: 1 December

www.caas-initiative.org

Residential HVAC: RMI Cooling Prize

- Seeking super-efficient, climate-friendly, affordable residential AC
- Majority of 8 finalists chosen use natrefs
- 1. Godrej-Boyce: R290
- 2. S&S Design Startup Solution: **R290**
- 3. Transeara: transitioning to **R290** for prototype
- 4. Kraton Corporation: water
- 5. M2 Thermal Solutions: water

Removing barriers for hydrocarbons

- 3-year project concluded 14 June 2020
- Improve standards and product design for safe use
- Conducted field study on leak hole size and type per application and set up public databases
- Conducted quantitative risk assessment and developed prototypes with enhanced product safety features for 5 different types of equipment

http://lifefront.eu

Guiding small & organic independent food retailers

- European Project to encourage the adoption of more energy-efficiency RACHP units
- Includes single-split air conditioners for space cooling
- Currently: Often rely on extended maintenance / secondhand equipment with less sustainable refrigerants
- Challenge: Use distributors as intermediaries / no tailored cooling systems matching their needs

KINIVK

shecco STEK ذ 🐘 🛒

Global NatRef textbook to raise the bar for training

- Partnered with German publisher VDE Verlag
- English version: Natural Refrigerant Applications and Practical Experience
- 340-page practical handbook for the HVAC&R industry, covering all natrefs – written by top experts
- Planned publishing date of English version: Sep/Oct 2020

Michael Eckert, Michael Kaufters, ** Volker Siegismund (Hrsg.)

Natürliche Kältemittel – Anwendungen und Praxiserfahrungen

In search of the best products

- Working with EIA on the "Pathway to Zero" Report Product Annex to be presented at COP26
- Products using natural refrigerants or no refrigerants
- Best-in-class list
- Companies can submit suitable products
- Watch this space!

F-Gas what next? Get involved

Currently conducting a survey

Aim: To inform policy makers

Assessing the current EU F-Gas Regulation:

- What worked?
- What didn't?

Looking at the next EU F-Gas Regulation update:

- What should be included?
- What does progressive industry want?

What can YOU do?

- **OEMs:** invest in R&D and develop new technology
- Professional team: upskill your team and pitch natural solutions to end users
- End users: do your homework, insist on a climate neutral HVAC&R solution, not just the lowest CAPEX
- **Government:** drive change with policy
- Academia: research and training to make cooling sustainable and accessible to all

Thank you for listening!

