



#### Successful Conversion of Railway Air-Conditioning Unit to Transcritical R744 Technology

#### **Neal Lawrence**

Creative Thermal Solutions, Inc. Urbana IL, USA







#### Outline

- Background and motivation
- Objective: Convert existing HFC rail passenger car AC unit to R744 technology while improving COP and maintaining existing unit weight
- System design
  - Component selection: New fan and blower technology, compressor selection
  - R744 technology: IHX, high-side pressure optimization, gas cooler design
- Prototype R744 unit fabrication
  - Size and weight reduction potential with R744 unit
- Experimental demonstration of capacity and COP improvement with R744 unit





#### **Motivation and Objectives**

- Most existing railway and other mass transit air-conditioning units use HFC's
  - HC's and NH<sub>3</sub> are generally not acceptable for mass transit applications because of safety concerns, leaving CO<sub>2</sub> (R744) as the natural refrigerant solution
- Objective: Convert existing R407C unit for high-speed rail passenger cars to R744 technology meeting the following performance metrics:
  - Meet capacity target of 44 kW at design point (29°C/35°C indoor/outdoor temp, 60 % RH) between two dual circuits
  - Achieve COP improvement of at least 5 % over baseline HFC unit
  - Demonstrate potential to reduce unit size by 10 % with no increase in weight compared to baseline



Example rail AC unit mounted on top of passenger cars



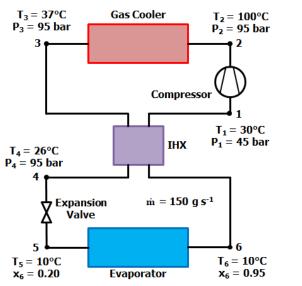
Baseline R407C unit for highspeed rail passenger car AC





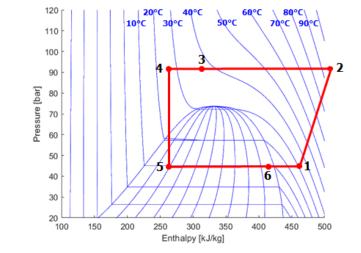
#### **System Design and Performance Prediction**

• Single-stage transcritical R744 cycle architecture with IHX selected for each refrigeration circuit


 $Q_{evap} = 22.6 \text{ kW}$ 

Cycle COP = 3.02

(COP does not include


fan or blower power)

 $Q_{qc} = 30.1 \text{ kW}$ 

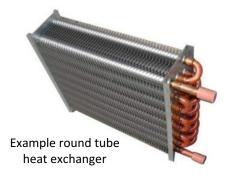


23-24/06/2020 - Online

Predicted capacity and cycle COP meet target values based on realistic component performance assumptions ( $\Delta T_{gc,approach} = 2 \text{ K}$ ,  $\eta_{comp} = 0.67$ ,  $\varepsilon_{IHX} = 0.8$ ,  $\Delta T_{evap,ref-air} = 20 \text{ K}$ )





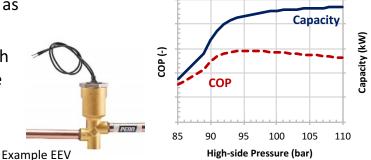



### **R744 Technology for Improved Unit Performance**

- Compressor was selected based on lowest weight option and reliability in mobile applications
  - Very limited selection of hermetic transcritical R744 compressors available, but not in the right capacity range or approved for mobile applications
  - There is opportunity to develop light weight R744 options targeting the mass transit industry
- Gas cooler custom designed using CTS' in-house tools to optimize mass flux and minimize approach temperature
  - Round-tube coils chosen for reliability (microchannel technology not currently accepted by railway community due to concerns of corrosion and air-side blockage)
  - Multiple rows of fins used to reduce conduction between first rows of refrigerant tubes



Example semi-hermetic reciprocating compressor






# Creative Thermal Solutions, Inc.

### **R744 Technology for Improved Unit Performance**

- Internal heat exchanger or IHX (use cool suction gas to further cool fluid from gas cooler below ambient temp)
  - Brazed plate as an IHX provides a light-weight, compact method to significantly boost capacity and COP by up to 20 % each or even higher
- Electronic expansion valve (EEV) to optimize high-side pressure for different ambient conditions and system loads
  simulated COP optimization at 35°C
  - Balance increasing capacity and compressor power as high-side pressure increases to maximize COP
  - Secondary benefit of high-side pressure control with IHX is opportunity to overfeed evaporator and raise evaporator pressure





Example brazedplate HX

#### 23-24/06/2020 - Online



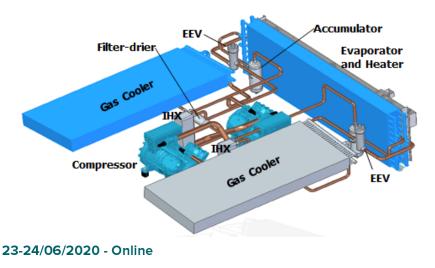


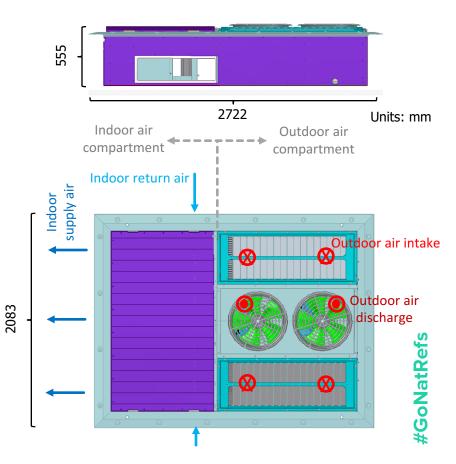
#### **Improved Fan and Blower Technology**

- Light weight fans and blowers are available specifically for railway applications, helping to reduce weight and improve energy efficiency compared to the older technology of baseline unit
- Blade material is polyamide plastic (non-flammable as required by railway industry)
- Electronically commutated motors for improved efficiency over wide range of speeds






Centrifugal blowers

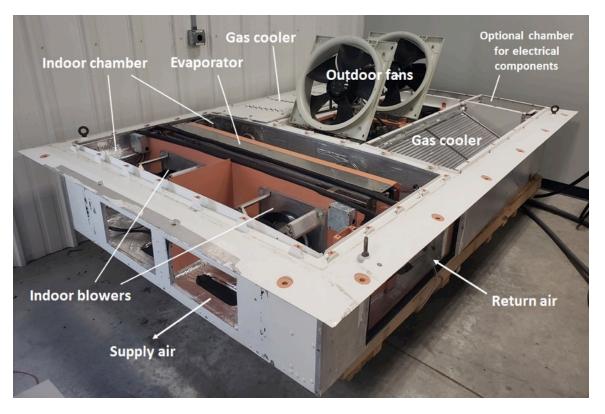





### **Unit Configuration and Layout**

- Components arranged in dual-circuit system
- Evaporator, valves, and accumulators placed in indoor compartment, compressors, IHX's, and gas coolers placed in outdoor compartment



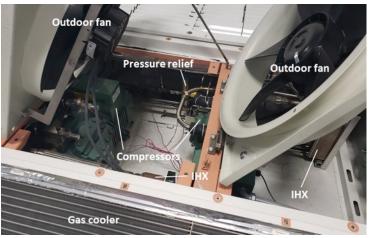







### **R744 Rail AC Unit**

- Fully-functional prototype R744 unit was fabricated for demonstration and evaluation
- Covers removed to see interior components








### **R744 Rail AC Unit**

#### Outdoor air compartment



#### Indoor air compartment





# #GoNatRefs

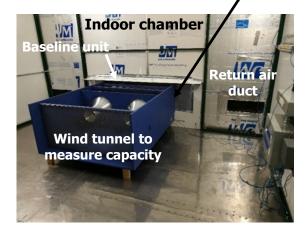




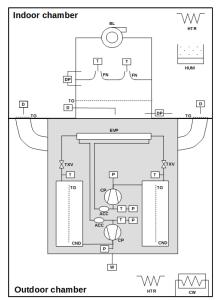
# R744 unit has significant savings in size and weight compared to R407C baseline

- Total length and volume of unit reduced by 13 %
- Additionally, weight reduction of several percent achieved despite switch to high-pressure R744 components, helped by newer fan and blower technology, optimized HX design, & reduced unit size

|        | R407C Baseline | R744 Unit |  |
|--------|----------------|-----------|--|
| Width  | 2.1 m          |           |  |
| Length | 3.1 m          | 2.7 m     |  |
| Height | 0.6 m          |           |  |


#### Unit dimensions




# Unit Performance Evaluation in CTS Rail A/C Test Facility

- Units were instrumented and placed in environmental chambers to control ambient and indoor conditions
- Capacity was measured with TC grids and flow nozzles











#GoNatRefs



23-24/06/2020 - Online





#### **R744 Unit Performance and Comparison to Baseline**

- Very significant improvements in capacity (14 %) and unit COP (16 %) show great potential for R744 unit to replace HFC units
- Prototype meets capacity target of 44 kW
- Unit COP includes fan and blower power

|               | R407C<br>Baseline | R744<br>Unit | Improvement<br>with R744 Unit |
|---------------|-------------------|--------------|-------------------------------|
| Indoor temp.  | 29°C              |              | -                             |
| Wet bulb      | 23°C              |              | -                             |
| Outdoor temp. | 35°C              |              | -                             |
| Capacity      | 39.1 kW           | 44.7 kW      | + 14 %                        |
| СОР           | 1.96              | 2.28         | + 16 %                        |

Improvements in capacity and efficiency of R744 unit aided by use of newer components (e.g. fans, blowers, heat exchangers) and increased cycle and control complexity





### **Opportunities for Further Improvements in Railway AC Technology**

- Design reversible AC/HP system: R744 performance in heat pump mode is very favorable and can be used to improve heating efficiency of unit in winter
- Ejector: Use two-phase ejector for significant improvements in COP and capacity, especially at high ambient temperature or under heat pump mode (realistic COP improvements of 10 – 20 %)



 Microchannel heat exchangers: Small-to-moderate improvement in heat transfer but very significant reduction in weight







#### Conclusions

- This investigation has shown the very promising potential that the natural refrigerant CO<sub>2</sub> (R744) has to replace HFC's and HFO's in mass transit AC systems, such as the high-speed rail AC unit that was the focus of this study
- The R744 prototype railway passenger car AC unit has achieved performance improvements of 14 % in capacity and 16 % in COP while reducing size by 13 % and weight by several percent, all of which exceed the design objectives set by the railway industry
- Much opportunity for future development: Reversible AC/HP system design; light-weight compressor development; ejector technology; microchannel heat exchanger technology





# Thank you for listening!

