

DANISH TECHNOLOGICAL INSTITUTE

it's all about innovation

INSTITUTE

Insect protein for sustainable feed production

Feed Additives Global 2018 Amsterdam 2018

Anton Gligorescu, Consultant, DTI

Agenda

- Global protein current situation
 - Demands
 - Environmental impacts
 - Sustainability
- Alternative protein
 - Insects and insect sector
 - Sustainability aspects
 - Production process
 - Nutritional profile
 - Main challenges
- Questions

Self-owned and not-for-profit

DANISH TECHNOLOGICAL INSTITUTE

More than 1,000 innovative employees, state of the art equipment and facilities as well as a strong global network.

The 'Insect Value Chain' @DTI

Competences and relevant facilities to support R&D and business development

DANISH TECHNOLOGICAL INSTITUTE

F

Global protein: demand and impact

- Animal feed, estimated at a global volume of 1,000M tons in 2014, represents 60-70% of animal production costs
- Livestock sector: 75% of all agricultural land, requires 8% of global human water use – irrigation and emits 14.5% of all anthropogenic GHG.
- FAO estimates that food production has to increase by 70% to feed the global population in 2050
- Main protein sources: Soya, Fishmeal, Maize and Grain

Alternative proteins

- Requirements:
 - Moderate-high protein content
 - Good protein digestibility and nutritionally relevant amino acid profile
 - Moderate to high content of relevant minerals and vitamins
 - Limited content of anti-nutritional factors
 - Health promoting properties (e.g pre-biotic, feed fibers)
 - Sustainable production
 - Competitive prices (soymeal and fishmeal)
- Candidates:
 - Aquatic biomass microalgae, macroalgae and seaweeds
 - Industrial residues and formal foodstuffs
 - Single cell protein
 - Insects

Insect production - sustainability aspects

Ì

DANISH TECHNOLOGICAL

- Low land demand
- Low GHG emissions
- Low water demand
- Short life-cycle
- Bio-conversion of residual streams
- High efficiency
- High yield per unit production
- High protein
- High fat
- Fibers
- Vitamins and Minerals
- Pro-biotic properties

Insect production - generic production process

Insect production – Hermetia illucens

DANISH TECHNOLOGICAL INSTITUTE

Production in a garage:

- Larval biomass: 17 tones/year (dm)
- Larval protein: 6 tones/year (dm)
 Soy production USA
- Soy seeds: 3.2 tones/hectare
- Soy protein: 2.26 tones/hectare

- Garage dimensions:
 5m * 4m * 2m
- Production place: 4m * 3m * 1.75m

Experimental parameters:

- Substrates: Chicken feed
- Duration: 8-10 days
- Survival: 80 100%
- ≈30 °C; 60% RH
- Substrate DM: 18 -22%
- Larval production per m³: 23 kg

Larval characteristics:

- Ash: 9.5%
- Protein: 46%
- Fat: 18%

Latest FCR (DM): 1.6

Nutrients quality

Essential amino		DOD	et . I I	6	
acids	Mealworm	BSFL	Fishmeal	Soymeal	
Histidine	2.7	2.7 2.6		2.6	
Arginine	4.5	4.8	5.8	7.4	
Threonine	3.6	3.6	4.3	3.9	
Valine	5.9	5.6	4.8	4.8	
Methionine	1.2	1.4	2.9	1.4	
Isoleucine	4	4	4	4.6	
Leucine	6.9	6.6	7.4	7.5	
Phenylalanine	3.2	3.8	3.6	5	
Lysine	4.9	5.6	7.8	6.1	
Total	36.9	38	43.2	43.3	

Mealworm, BSFL and fishmeal: Józefiak *et al.*, 2016 Soymeal: Fedepedia, Soybean meal

CUID

	Protein: 50-60% Fat: 10-30% DM: 30-40%	Protein: 40-50% Fat: 25-35% DM: 30-40%
Fatty acids	Mealworm	BSFL
C12:0	0.2–1.3	21–37
C14:0	1.1-8.2	2.9–8.6
C16:0	11–23	12–20
C16:1	1.6–4.7	3.8-6.3
C18:0	1.0-4.5	1.8-6.5
C18:1n9c	40–61	23–32
C18:2n6c	15–31	2.1-6.8
C18:3n3	0.3–1.3	0.0–0.5

Oonincx et al., 2015

Digestibility in mink and young pigs

DANISH TECHNOLOGICAL INSTITUTE

Digestibility in	BSFL		Fishmeal (322-0)				
mink	Digestibility %			Digestibility %			
Dry matter	42.8%		92.4 %				
Protein (N*6.25)	20.1%	86	70.5 %	83			
Fat	15.5%	90	11.3 %	94			
Ash	1.2%	-	12.9 %				
					Nutrients digestibility in young pigs		
				Diets	Diet 1 (fishmeal 5%)	Diet 2 (BSFL meal 7%)	Diet 3 bioactive additive: 0.5kg BSFL/t)
				Dry matter (%)	74.85	80.4	81.28
				Protein (%)	79.82	82.45	82.85
				Fat (%)	53.71	64.05	55.37
				Fibre (%)	29.6	41.39	51.09
				Growth rate (g/day)	500	533	571.8
				Nekrasov et al. 2015			

Nekrasov et al., 2015

Main challenges of the insect industry

TECHNOLOGICAL

Upscaling (industrial level)

- Insect biology in production environment
- Development of (customized) automation
- Development of species-specific feed

Legal barriers (EU) in feed and food

- Increasing the knowledge-level on feed/food safety of insects
- Political priority to promote the use of insects as feed and food
- Consumer acceptance (mainly as food)
 - Information...

Insects: Regulatory overview

References

- Józefiak et al., 2016. Insects-a natural nutrient source for poultry- a review. Ann. Anim. Sci., 16, 2: 297–313.
- Fedepedia, Soybean meal, Nutritional tables. Online source: <u>https://www.feedipedia.org/node/674</u>
- Oonincx et al., 2015. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. Plos one. Online source: <u>https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0144601&type=</u> <u>printable</u>
- Nekrasov et al., 2015. BIOCHEMICAL CHARACTERISTICS OF HERMETIA ILLUCENS: A BASE FOR PROSPECTIVE USE OF LARVAL BIOMASS IN YOUNG PIG FOOD. Journal of Nature Science and Sustainable Technology 9, 2.

Anton Gligorescu E: <u>ANGL@dti.dk</u> M: +45 7220 2904