

DANISH TECHNOLOGICAL INSTITUTE

it's all about innovation

DANISH TECHNOLOGICAL

Insecta 2019 Potsdam 2019

Anton Gligorescu, Consultant, DTI

Agenda

- Global food and feed
 - Demands
 - Protein feed requirements
- Feeding services
 - Diet formulation
 - Dietary experiments
 - Validation pilot production
 - Nutrient content
 - Ongoing work
- Questions

Self-owned and not-for-profit

DANISH TECHNOLOGICAL INSTITUTE

More than 1,000 innovative employees, state-of-the-art equipment and facilities, as well as a strong global network.

The 'Insect Value Chain' @DTI

Competences and relevant facilities to support R&D and business development

DANISH TECHNOLOGICAL INSTITUTE

ð

Global feed: demand and impact

- Animal feed, estimated at a global volume of 1,000M tons in 2014, represents 60-70% of animal production costs.
- Livestock sector: 75% of all agricultural land, requires 8% of global human water use – irrigation, and emits 14.5% of all anthropogenic GHG.
- FAO estimates that food production has to increase by 70% to feed the global population in 2050.
- Main protein feed sources: Soya,
 Fishmeal, Maize and Grain.

Protein feed requirements

- Requirements:
 - Moderate-high protein content
 - Good protein digestibility and nutritionally relevant amino acid profile
 - Moderate to high content of relevant minerals and vitamins
 - Limited content of anti-nutritional factors
 - Health-promoting properties (e.g. prebiotics, feed fibers)
 - Sustainable production
 - Competitive prices (soymeal and fishmeal)

Substrate selection and diet formulation

Dry matter (dm), protein, lipid and ash content (%) and availability of different substrates from Guldborgsund Municipality.

/					
Substrates	Dry matter (dm) (%)	Protein (%dm)	Lipid (%dm)	Ash (%dm)	Sesonability
Seagrass	13	7	1	31	all year
spent grain	17	25	11	3	all year
apple pomace	20	5	4	4	autumn
wheat	88	12	3	1	all year
Rapeseed cake	74	35	10	8	all year
sugarbeet tops	14	29	3	24	autumn
malt	75	24	3	7	all year
butter cookies	96	6	22	1	all year

Percentage of different substrates and water used in the formulation of 4 diets

ATT TO

	Diet 1	Diet 2	Diet 3	Diet 4
Substrates	(%)	(%)	(%)	(%)
seagrass	10	5	0	0
spent grain	15	20	19	25
apple pomace	0	10	0	10
wheat	20	10	11	10
rapeseed cake	0	2	0	2
sugarbeet tops	5	0	2	0
malt	5	10	3	10
butter cookies	5	0	3	0
water	40	43	62	43

Experimental parameters

Total protein, lipid and ash content of different diets used in the dietary experiment

	Diet 1	Diet 2	Diet 3	Diet 4
Protein (% dm)	24	28	19	29
Lipid (% dm)	10	7	9	7
Ash (% dm)	6	7	3	6

- Tray size: 30x20 cm
- Replicates: 3 per diet
- Temperature: 27°C
- Density: 11 larvae/cm²
- Total feed per replicate: 2 kg
- Dry matter: 19%
- Feeding episodes: 3
- Experimental time: 12 days

DANISH TECHNOLOGICAL

Dietary experiments

Larval and insect frass production during the dietary experiments $(avg \pm sd)$

Substrate reduction during the dietary experiments $(avg \pm sd)$

Dietary experiment

Feed conversion ratio on both fresh and dry weights, from the dietary experiment ($avg \pm sd$)

Diet 2 Diet 3 Diet 4 Diet 1

90

80

70

60

50

Validation of Diet 3 in pilot production

Production parameters:

- Tray size: 60x40
- Temperature: 27°C
- Density: 10 larvae/cm²
- Feed used: Diet 3
- Total feed per replicate: 8 kg
- Dry matter: 19%
- Feeding episodes: 2
- Experimental time: 10 days

Total larval and insect frass production during validation

Validation of Diet 3 in pilot production

Feed conversion rate from 2 pilot productions using Diet 3 and Chicken feed

Survival rate

- Diet 3: 84%
- Chicken feed: 91%

Substrate reduction from 2 pilot productions using Diet 3 and Chicken feed

Validation of Diet 3 in pilot production

Total protein, lipid and ash content of BSFL reared on Diet 3 and Chicken feed (avg.)

Nitrogen, Phosphorus and Potassium content in insect frass, diet 3.

	Nitrogen	Phosphorus	Potassium	
	(kg/tonne)	(kg/tonne)	(kg/tonne)	
Insect frass	17.2	4.8	7.4	

Conclusions and ongoing activities

Conclusions:

- By-products from Guldborgsund Municipality can be used to produce BSFL meal
- Low FCR indicating high efficiency of the system
- High protein and lipid content. Ongoing activities:
- Faecal profiling
- Optimization of insect meal processing
- Fish trials

Anton Gligorescu E: <u>ANGL@dti.dk</u> M: +45 7220 2904