ILVO

GUDP project: Biobased growing media for plant production (BioSubstrate 2.0) Aarhus, 6 sept. 2022

Increasing the circularity of growing media: the challenge of new materials and reuse

Bart Vandecasteele

Contact: Bart.vandecasteele@ilvo.vlaanderen.be

Need for renewable biomass ... rich in organic C with high C/N and C/P ratio

Need for renewable biomass ... rich in organic C with high C/N and C/P ratio Low bulk density

The Settlers fra Catan

Topics for growing media

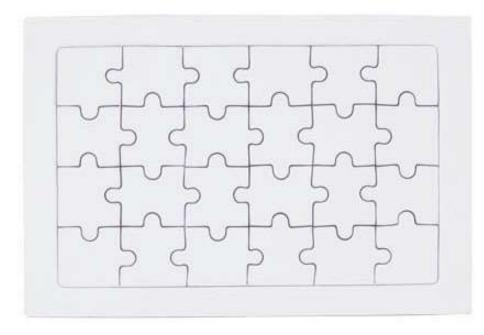
New materials Amendments Processing Interaction with fertilizers Reuse of growing media End-of-Life and C storage

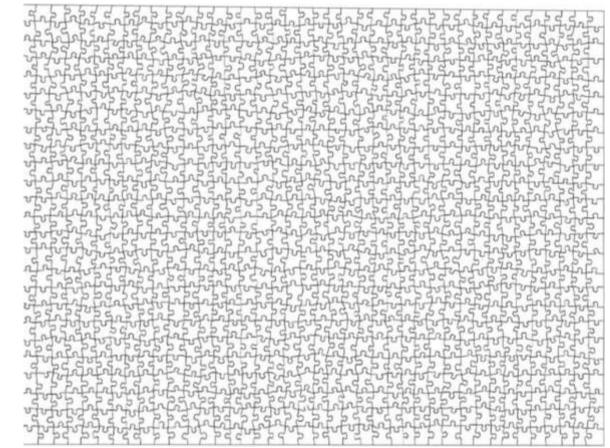
Conventional	Alternatives	Alternatives (test phase)	Circular use?
peat	Bark (compost)	Biodegradable polymers	Direct reuse
Coir products	Wood fiber	Woody compost	Conversion to composting
mineral wool	Green compost	Biochar	Conversion to biochar
perlite	Peat moss	Plant fibers	Conversion to soil improver
	Rice hulls	•••	
	•••		

Growing media:

Sustainable?

Available (amounts/price/quality)?


Renewable?

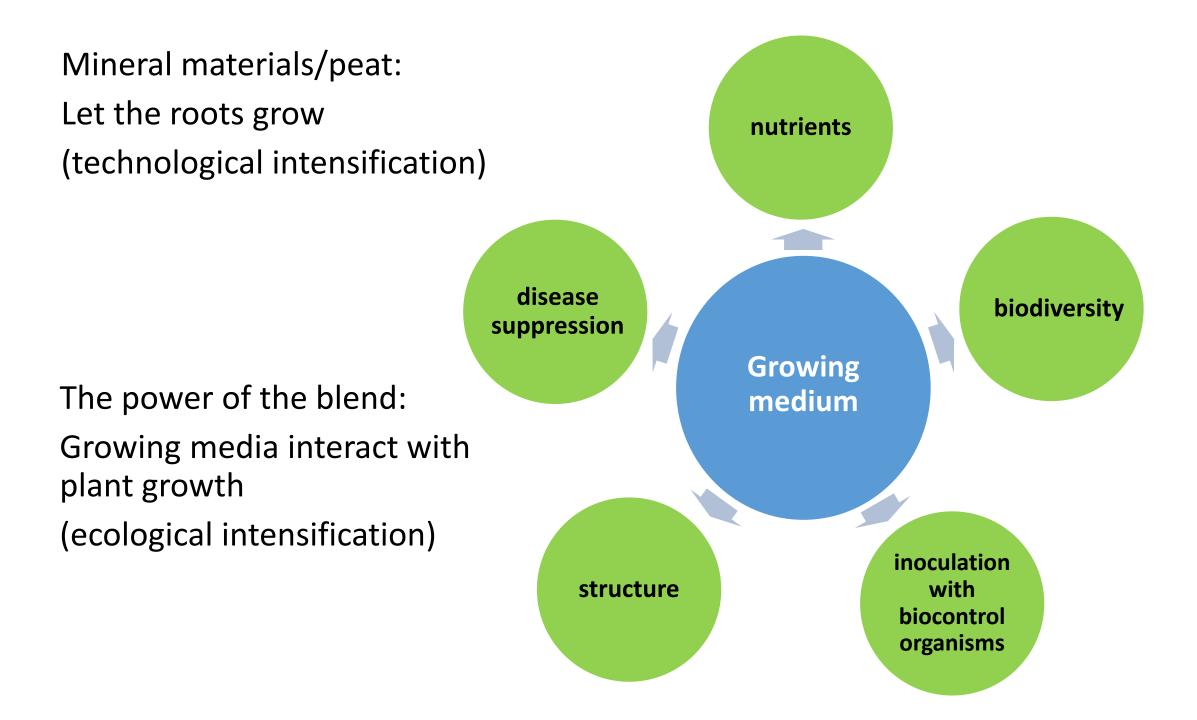

Ready to switch to alternatives?

Blok et al. (2021): https://doi.org/10.17660/ActaHortic.2021.1305.46

From the past to the future: more materials and more growing media

Growing media and climate

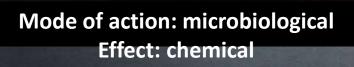
Climate adaptation


- Urban greening
- Soilless cultivation
- Pre-planting substrates

Climate mitigation

- Using local & renewable materials
 - = protect carbon stocks in peat areas
- Biochar as C-negative solution
- Upcycling spent growing media
- Avoiding energy-intensive products: mineral products, chemical crop protection, chemical fertilizers

Biochar


Chitin

- Andrew Co

Elemental S

Mode of action: microbiological Effect: chemical

Plant fibers

C:N ratio

Wood fibres Chopped heath biomass Flax shives Miscanthus straw (Cattail straw) **Reed straw** (Hemp fiber) Soft rush Fresh grass clippings

Biodegradability

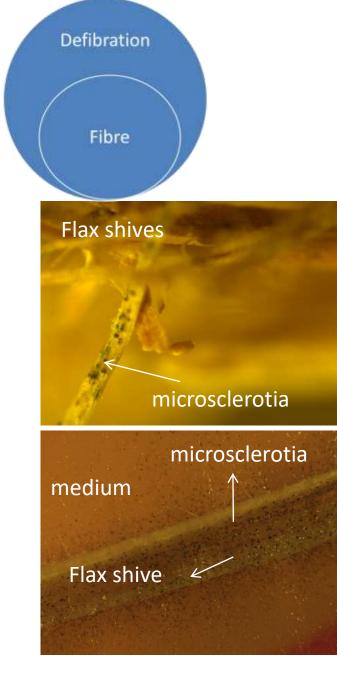
NPK content

Growing media: microbiome

	n	N-immob. risk	Microbial biomass	CO ₂ release	
		%	nmol fatty acid/g OM	mmol CO ₂ /kg OM/hr	
peat	9	15	166	1,2	
wood fiber	6	7	77	1,5	
bark compost	5	20	341	2,6	
green compost	9	23	968	3,6	
plant fiber	9	60	550	7,0	

New materials = more microbiology => positive or negative?

More info: <u>10.3390/agronomy12020422</u>


Flax shives

Rich in organic matter (>95%) Rich in C (>50%) High C/N (90) and C/P (>500) ratio **Risk for high N immobilization** Low bulk density Contains Verticillium dahliae Microsclerotes High availability (in Belgium)

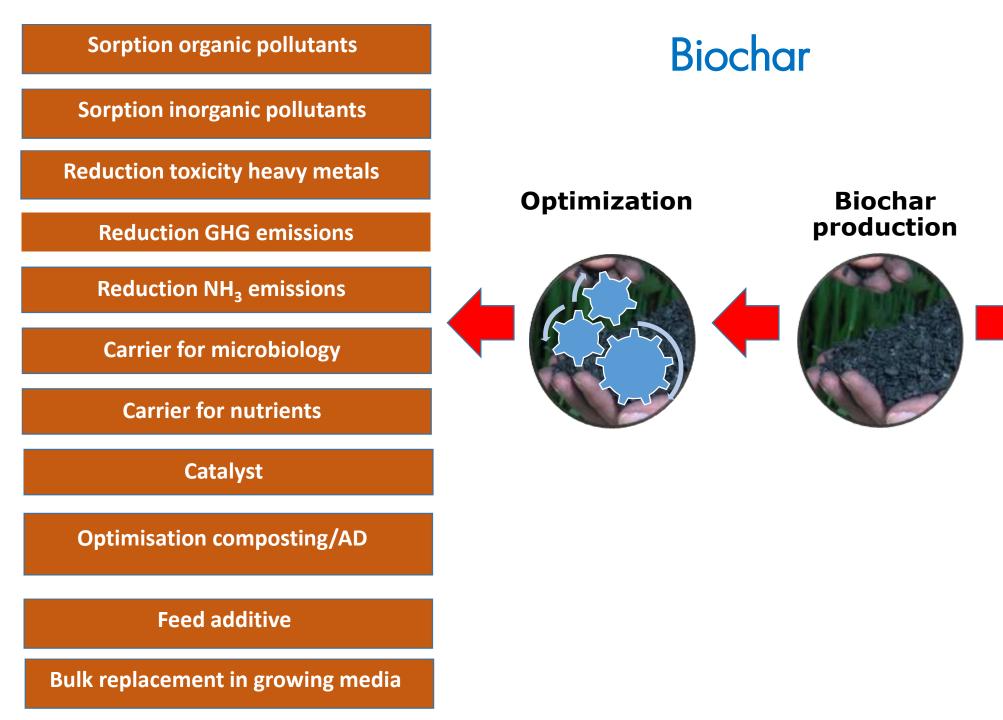
Meer info:

1 Liter

https://www.sciencedirect.com/ science/article/abs/pii/S095965 2618325101 > 1 Liter

Plant pathogens

- Effect fiberisation
 - Tested with selective medium (5x)


Fiberisation	Surviving pathogens (# colonies)			
Untreated	10.0±2.4			
technique 1	0.0±0.0	No surviving		
technique 2	0.0±0.0	pathogens!		
technique 3	0.0±0.0	-		

Elemental S: fast pH decrease (> 2 pH units in < 2 weeks)

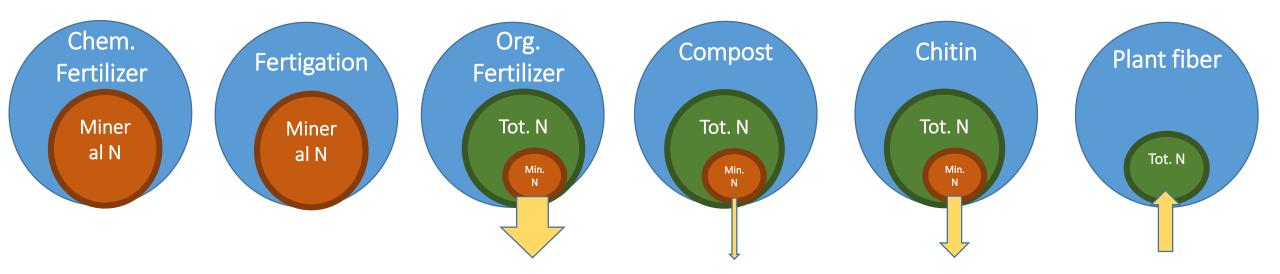
Staal	рН- Н2О	EC	Nimmob	OM	OUR	C/N	Total biomass
	-	μS/cm	%	%/DM	mmol/kg OM/hr		nmol/g OM
Ensiled soft rush 2019	7,9	448	7	89	16	22	1441
Ensiled soft rush jan. 2020	7,8	471	44	92	14	31	949
2019 after acidification (+ S)	4,3	708	-4	87	5	22	1071
2020 after acidification (+ S)	5,1	941	-25	82	5	20	898

Biochar

application in

field soils

		OM	OC	OM/C	C/N
		%/DM	%/DM		-
Flax	feedstock	97	54	1,8	89
Miscanthus	feedstock	97	54	1,8	300
Flax	400°C	92	69	1,3	91
Miscanthus	400°C	95	71	1,3	157
Flax	650°C	88	94	0,9	136
Miscanthus	650°C	92	84	1,1	418


1 Liter

More info: https://www.mdpi.com/2073-4395/11/4/629

Feedstock versus biochar

		pH-H2O	EC	Р	К	Mg	Ca
		-	μS/cm		g/kg	DM	
Miscanthus	Feedstock	7.8	110	0.9	3.1	0.8	4.1
Flax		6.5	89	0.5	1.9	0.3	2.1
Miscanthus	400°C	9.5	160	2.2	9.2	2.1	10.7
Flax		8.7	42	1.2	7.3	1.2	6.1
Miscanthus	650°C	9.8	392	3.6	13.8	3.3	17.0
Flax		9.1	191	2.1	7.9	1.2	4.8

Interreg 2 2 Seas Mers Zeeën Horti-BlueC

N mineralization: microbial process Compost in the blend: higher NO_3 -N/NH₄-N ratio = more nitrification

N immobilization: microbial process

- Higher risk for materials with higher C/N ratio
- Faster process for materials with a higher decomposition rate

New growing media: guidelines

Blend different materials for successful peat replacement

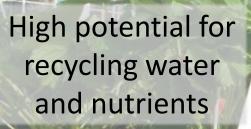
Differentiate between bulk materials and organic fertilizers (e.g., for composts)

Compost in the blend = more nitrification = positive!

Additional treatments of materials:

acidification, fiberisation, maturation, ...

Compost and biochar: fertilizer en lime replacement


Plant fibers: source of nutrients

Let the N mineralisation process start before plant growth

RE-

Growing medium

Precise application of resources (water, fertilisers, energy)

	CALL DATA STATE TO AND					
	kg/ha					
	Plants	Spent peat				
DM	2800	9500				
С	1100	4000				
Ν	70	114				
Р	9	6				
К	70	18				
Ca	50	163				
Mg	12	32				
Probleman .		And a second				

PROEFCENTRUM HOOGSTRATEN

Sustainable Controlled Environment Horticulture

Growing media

- End-of-life impact affects the sustainability (LCA)
- Linear use => circular use: reuse, recycling, soil amendment

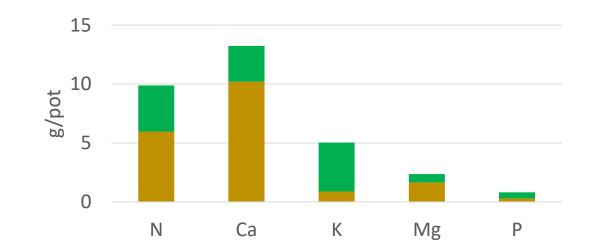
Use of renewable biomass (wood fiber, compost, ...) in cascade:

- In growing media for greenhouse cultivation
- As soil improver for C sequestration

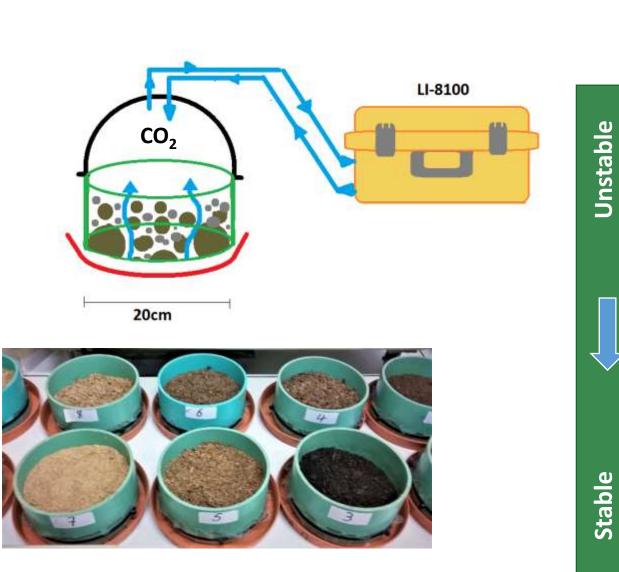
Added value of using biochar in growing media:

- For the crop
- For C sequestration
- Use in cascade?

6 full scale trials with different growing media


- 6 full scale trials at Proefcentrum Hoogstraten
 - 3 trials with tomato, 3 with strawberry
 - 4 trials of 10 months, 2 trials of 4 months

- Comparison of peat-based blends and/or mineral wool with
 - Strawberry: peat-reduced blends (green compost and wood fiber)
 - Tomato: peatfree blends (green compost, coir, bark and wood fiber)
- Comparison of 3 blends with or without 10 vol% woody biochar:
 - 3 trials
 - 1 peat-free and 2 peat-reduced
- No yield decrease with peat-reduced or peatfree blends, sometimes higher yields


Aboveground plant biomass Highly decomposable 150 g dry matter/pot

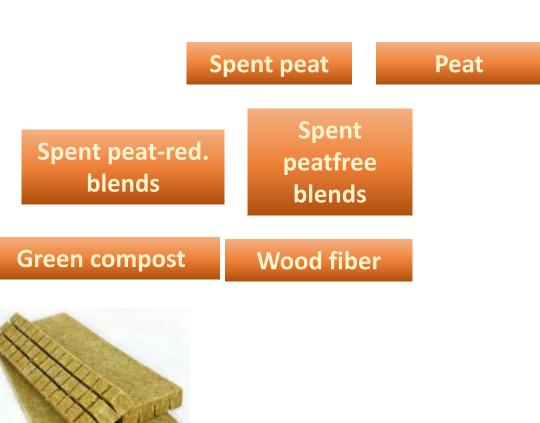
Peat substrate

Spent growing medium Stable 670 g dry matter/pot

CO₂ emission for screening C stability

Characterisation:

Organic and inorganic C Total N, P, K, Ca, Mg pH, EC Mineral N % N mineralisation Cation Exchange Capacity Available P, K, Mg, Ca, Cl C mineralization


- Fertilizer added
- CO₂ flux
- 28 days
- 13 measurements
- Expressed as rate

C Stability

Mineral wool

Roots

Biochar

C/P ratio

Spent media: Peat / Rockwool / Peat-reduced / Peatfree

		Peat	Rockwool
Organic C	%/DM	47 c	4 a
C mineralisation rate	mmol CO2/kg C hr	1.4 a	14.5 b

Effect of 10 vol% biochar on characteristics of Spent Growing Media

Comparison of 3 blends with or without 10 vol% woody biochar (3 trials, 1 peat-free and 2 peat-reduced):

- No significant effect on:

C mineralisation rate, N mineralisation rate, pH, EC, mineral N, Total N, P, K, Mg, Ca, Na, inorganic C, CEC on DM basis, C/P ratio

- + biochar => Significant effect (p< 0.05) on:
 - % organic C: increase from 35 to 44 % OC/dry matter
 - C/N ratio: increase from 32 to 40
 - CEC on total C basis: decrease from 175 to 131 cmolc/kg OC

Effect of growing medium on biochar characteristics

Comparison of 3 biochars recovered from the growing medium (3 trials, 1 peat-free and 2 peat-reduced) versus the initial biochar:

- No significant effect on:

C/N ratio, EC, NH₄-N, Total P, K, Mg, Ca, Na, organic and inorganic C, CEC, C/P ratio

- Significant effect (p< 0.05) on **biochar** :
 - pH: % organic C: decrease from 9.2 to 6.2
 - Waterextractable NO₃-N: increase from <5 to 62 mg NO₃-N/L
 - Total N: increase from 0.3 to 0.8 %N/DM

Conclusions for spent growing media as soil improver

Peatfree vs. peat-reduced vs. peat:

- High C stability
- High org. C content vs. high C/N and C/P
- Low N mineralisation

Growing media affect the biochar characteristics

- Decrease in pH
- Increase in N loading

Biochar affects the spent growing media

- increases the org. C content but not the C stability

Work-in-progress for renewable blends

Conformation of trends observed during use as growing medium:

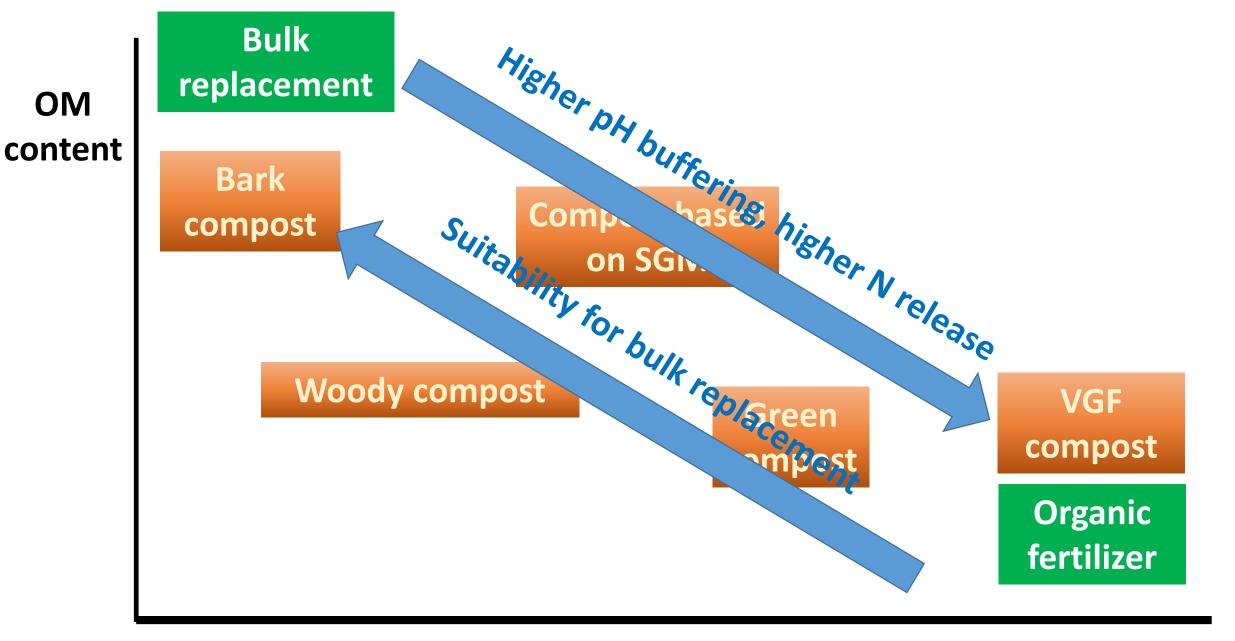
- Increase in C stability of renewable blends
- Decrease in total K content
- No accumulation of P

Optimization of use as growing medium:

- Decrease in total P content
- Avoid accumulation of Ca and Mg

Strawberry trials with:

- Peatfree &
- Biochar



New materials

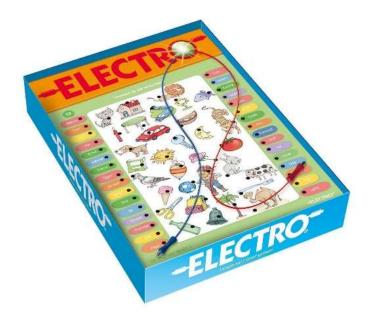
Feedstock versus biochar

Material	pH-H2O	EC	IC	OC	Ρ	К	CEC	
	-	μS/cm	%/I	DM	g/kg	DM	cmolc/kg	
Spent peat 1	6,3	599	0,06	46	0,8	3,0	112	-
Spent coir 1	4,2	431	0,01	46	1,7	3,7	84	4
Spent peat 2	5,7	912	0,08	43	0,8	3,2	109	FIT
Spent coir 2	5,7	882	0,08	45	1,1	2,5	101	
Biochar, spent peat 1	8,7	718	0,08	78	2,4	8,3	18	
Biochar, spent coir 1	9,7	556	0,08	85	3,5	13,1	37	4
Biochar, spent peat 2	9,6	747	0,72	71	2,1	9,7	14	
Biochar, spent coir 2	9,3	479	0,53	68	2,6	7,3	20	Men
A. S.				/ 1	THERE ARE			

Nutrient content

Circular use: reuse, recycling, soil amendment

Peat				
Rockwool				
Peat-reduced				
Peatfree				
Volume reduction	Very low	higher	low	Very low
Value	Bulk material	Organic fertilizer	Organic fertilizer	Soil improver


Reuse of growing media: guidelines

Differentiate between bulk materials and organic fertilizers: Compost and biochar: fertilizer en lime replacement If nutrient levels are low: bulk, if high: organic fertilizer Direct reuse of growing media: take residual nutrients into account (s)low N mineralization rate P and K highly plant available Aboveground biomass: important source of nutrients

Challenges

- Define criteria for more materials with heterogeneity between batches
- Link a material/blend to a specific application or crop
- Assess the need for changes in the cultivation
 - More frequent irrigation, smaller doses, sensors?
 - Growing medium as source of nutrients?
- Combine growing media with circular fertilizers/nutrients
- Increase the reuse of spent growing media
- End-of-life of growing media = opportunity for C sequestration

Wish list for future research

- Biochar for bulk replacement:
 - further implementation in current practice (higher TRL + higher vol%)
 - Stand-alone material?
 - Circular use
- New fibers from different crops or vegetation
- Potential for using renewable fertilizers in soilless cultivation
- New growing media => interaction with disease suppression?

Circular: what does it mean for you?

Grower:

- Grow your own ... growing medium?
- Business model based on soilless cultivation ... and C farming? Growing media producer:
- Provide substrates that can be used for more than one cultivation cycle?
- Collect spent growing media an optimize the material for reuse?

Retailer/consumer:

• Buy C negative ornaments/vegetables/fruits/herbs?

Research and Innovation:

- Ask what a growing medium blend can do for you
- Define a new concept of providing nutrients for the crop

4 Horti-BlueC webinars

Horti-BlueC webinar 1: Large scale gasification for energy and biochar production <u>More info</u> <u>Recording</u> Factsheet

Horti-BlueC webinar 2: Production of chitin from shrimp shells or Chinese mitten crab <u>More info</u> <u>Watch recording</u> <u>Factsheet</u>

Horti-BlueC webinar 3: Spent growing media for direct reuse or as a feedstock for biochar and compost <u>More info</u> <u>Watch recording</u> <u>Factsheet</u>

Horti-BlueC webinar 4: New growing media blends for strawberry and tomato <u>More info</u> <u>Watch recording</u> Factsheet

Building blocks for sustainable growing media with a focus microbiology: more info?

	Video	Fact sheet	Paper
Chitin	<u>https://youtu.be/yUymPsQwS44</u>	Chitin fact sheet	<u>Chitin from shrimp shells or crab</u> <u>Chitin in Strawberry Cultivation</u>
Biochar	https://youtu.be/jiccJc9d-Gg https://youtu.be/9YpdSjLu-Zc	Biochar fact sheet	Biochar for Circular Horticulture Strawberry Rhizosphere and Biochar
Spent growing media	https://youtu.be/MXcMc0vS0f0	Spent growing media fact sheet	<u>Grow - Store - Steam - Re-peat</u>
Green compost		Microbiome of growing media	<u>Composts versus woody management residues</u> <u>Woody composts and organic fertilizers</u>
Plant fibers	https://youtu.be/fCiJ_20c8FQ	New growing media fact sheet	Plant fibers for renewable growing media

Thanks for your attention!

European Regional Development Fund

www.horti-bluec.eu

Bart.vandecasteele@ilvo.vlaanderen.be

Horti-BlueC YouTube channel https://www.youtube.com/channel/UCAmIINw 5Yndql8UMLsEhLJQ

This project has received funding from the Interreg 2 Seas Programme 2014-2020 co-funded by the European Regional Development fund under subsidy contract No 2S03-046 Horti-BlueC

CO_

CO.

CO,

CO,

CO,

CO,

CO,

CO.,

CO,

CO,

Horti-Blue