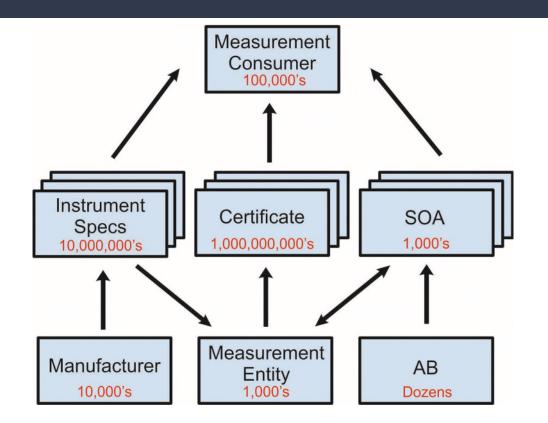

Metrology.NET

Metrology Driven Software Engineering

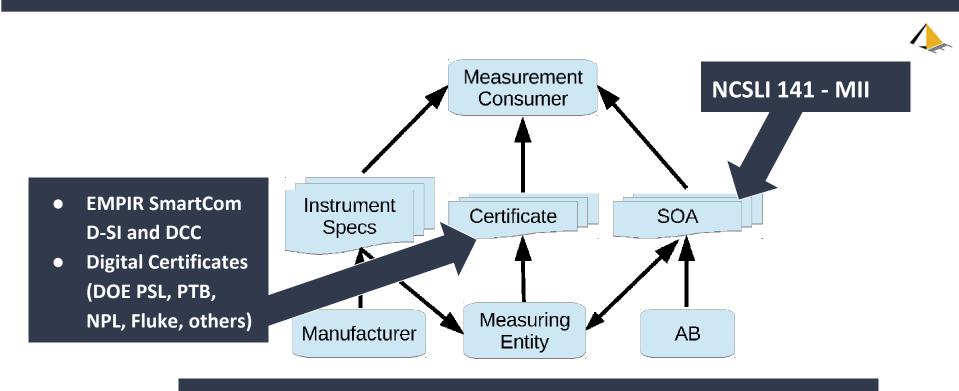

Michael L Schwartz - Cal Lab Solutions

You never change things by fighting the existing reality. To change something, build a new model that makes the existing model obsolete.

R. BUCKMINSTER FULLER

Metrology Information Infrastructure (MII) NCSI 141 Committee

Standardized Certificates of Calibration

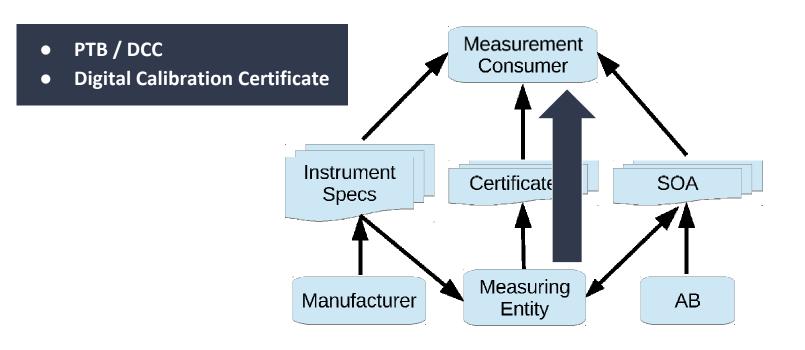

Measurement Entities
Create Calibration Certificates
for Measurement Customers

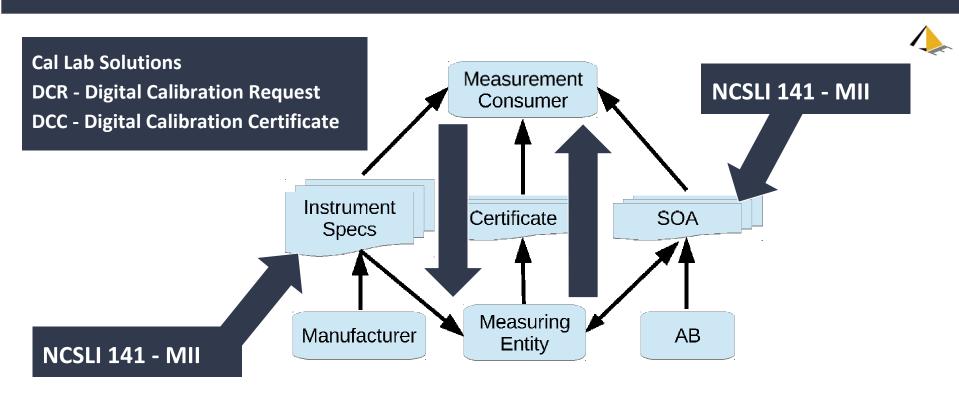
Equipment Specifications

Manufacturers
Create Instrument Specs
that Measurement Customers buy

Accredited Calibrations

Accreditation Bodies
Create Scopes of Accreditation
that Measurement Customers view



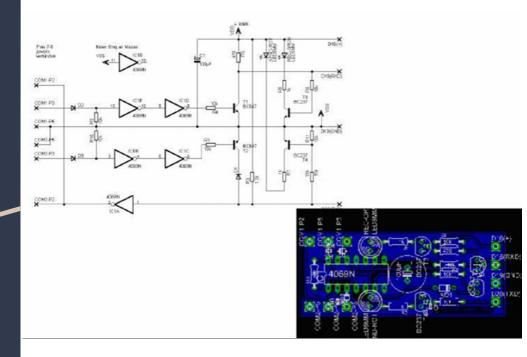

PTB's Digitization Strategy

MSL, APMP, others

BIPM's KCDB, M-Layer

European Metrology Cloud

What is Metrology Driven Software Engineering


- It's a metrology based language
- It's a method of describing test requirements in detail
- Generic description /detailed enough to function
- It's a metrology based version of Model Driven Engineering

Model Driven Engineering

Is nothing new!

We have been using them for years

Electrical Schematics is a model driven language

Model Driven Software Engineering

Precise & Unambiguous

Efficiency of Expression

Universal & Abstract

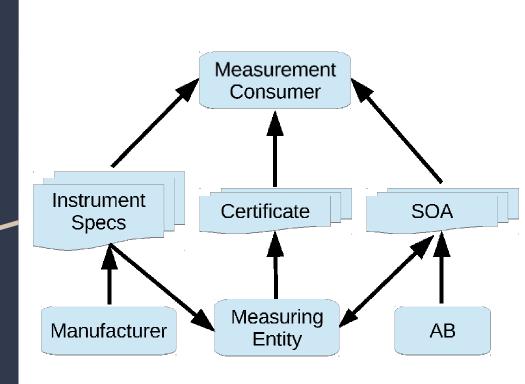
Language of Math

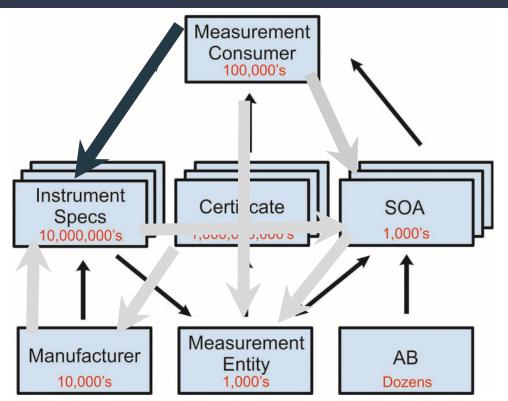
ΑαΒβ	alpha beta	Nν nu Ξξ ksi	$\frac{d}{dx}a = 0$	$\frac{d}{dx}u^{n} = au^{n-1}\frac{du}{dx}$
$\Gamma\gamma$	gamma	O o omicron	CLA.	un un
Δδ	deta		$\frac{d}{dx}(au) = a\frac{du}{dx}$	$\frac{d}{dv}(uv) = u'v + uv'$
Εε			dx dx	dx
	epsilon	Pρ rho	d , du dv	d (u) (u'v - uv')
Ζζ	zeta	Σσ sigma	$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$	$\frac{d}{dv}\left(\frac{u}{v}\right) = \frac{u^2}{v^2}$
Нη	eta	Tτ tau	tur tur	CON D
Θθ	theta	Y v upsilon	$\frac{d}{dx}(u-v) = \frac{du}{dx} - \frac{dv}{dx}$	$\frac{d}{d} \left(\frac{1}{2} \right) = -\frac{v}{2}$
Iι	iota	Φ φ phi	dx dx dx	dx (v) v^2
Кκ	kappa	X χ chi		
$\Lambda \lambda$	lambda	Ψψ psi	$\frac{d}{dr} f(q(y)) = f'(q(y))q'(y) = \frac{d}{dr}$	$\frac{dv}{du}\frac{du}{dx} = (v(u))^{*}u^{*}$ where $v = f(u)$ and $u = g$
$M\mu$	mu	$\Omega \omega$ omega	$\frac{1}{dx}$	du dx
mass		= [M]	$\frac{d}{dx}(e^u) = e^u \frac{du}{dx}$ $\frac{d}{dx}$	$(a^u) = a^u(\ln a) \frac{du}{dt}$
lemght		= [L]	dx dx dx	dx
time	2	= [T]	$d u_{n+1} = 1 du d$	$(\log u) = 1 du$
velocity		= <u>[L]</u> [T]	$\frac{\mathrm{d}}{\mathrm{dx}}(\ln u) = \frac{1}{u} \frac{\mathrm{d}u}{\mathrm{dx}} \qquad \frac{\mathrm{d}}{\mathrm{dx}}(\log_a u) = \frac{1}{(\ln a)u} \frac{\mathrm{d}u}{\mathrm{dx}}$	
momentum		$= \frac{[M][L]}{[T]}$	$\frac{d}{dx} f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$	
force		$= \frac{[M][L]}{[T][T]}$	$\frac{\mathrm{d}}{\mathrm{d}x}\sin u = \cos u \frac{\mathrm{d}u}{\mathrm{d}x}$	$\frac{\mathrm{d}}{\mathrm{dx}}\cos u = -\sin u \frac{\mathrm{d}u}{\mathrm{dx}}$
acceleration		$= \frac{[L]}{[T][T]}$	$\frac{\mathrm{d}}{\mathrm{dx}}\tan u = \sec^2 u \frac{\mathrm{d}u}{\mathrm{dx}}$	$\frac{\mathrm{d}}{\mathrm{dx}}\cot u = -\csc^2 u \frac{\mathrm{d}u}{\mathrm{dx}}$
work	ς.	$= \frac{[M][L][L]}{[T][T]}$	$\frac{d}{dx}$ sec $u = \sec u \tan u \frac{d}{dx}$	$\frac{du}{dx}$ $\frac{d}{dx}$ csc $u = -\csc u \cot u \frac{du}{dx}$
ener	gy	$= \frac{[M][L][L]}{[T][T]}$	$\frac{\mathrm{d}}{\mathrm{dx}} \sin^{-1} u = \frac{1}{\sqrt{1 - u^2}} \frac{\mathrm{d}u}{\mathrm{dx}}$	$\frac{\mathrm{d}}{\mathrm{d}x}\cos^{-1}u = -\frac{1}{\sqrt{1-u^2}}\frac{\mathrm{d}u}{\mathrm{d}x}$
pressure		$= \frac{[M]}{[L][T][T]}$	$\frac{\mathrm{d}}{\mathrm{d}x}\tan^{-1}u = \frac{1}{1+u^2}\frac{\mathrm{d}u}{\mathrm{d}x}$	
		(1)[1][1]	$\frac{d}{dx} \sec^{-1} u = \frac{1}{ u \sqrt{u^2 - 1}} \frac{d}{dx}$	$\frac{du}{dx} = \frac{1}{ u \sqrt{u^2 - 1}} \frac{du}{dx}$

Model Driven Engineering

Is nothing new!

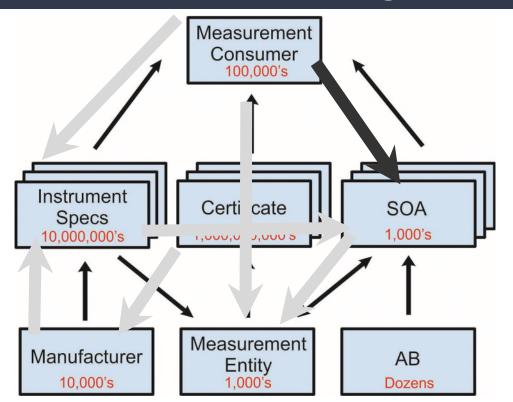
Music is a model driven language


What is a model based language


It defines the requirements not the implementation

Music defines the notes Not the instrument

Well Defined
Taxon Tagged Data
is
Easier to Move from
system to system

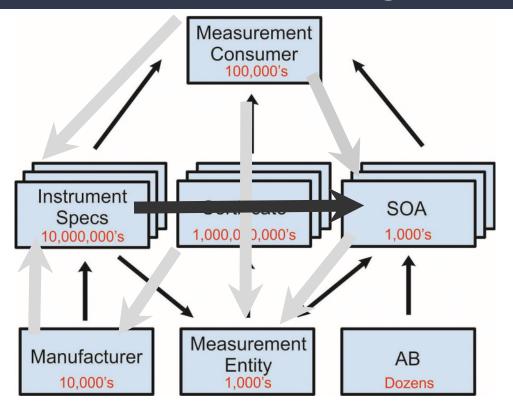


Customer can select the right / best equipment for their needs.

Customers can find a calibration lab

Specs can be used to simplify SoA uncertainties.

DCR to define exact Cal Requirements!

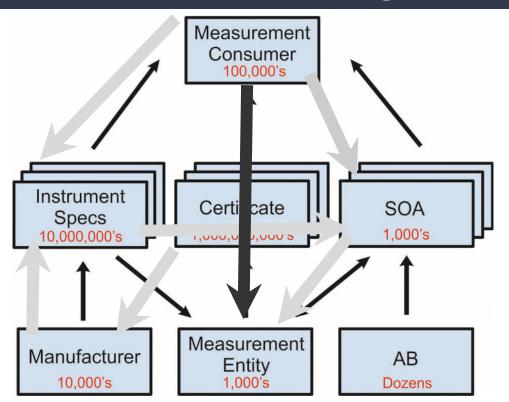


Customer can select the right / best equipment for their needs.

Customers can find a calibration lab

Specs can be used to simplify SoA uncertainties.

DCR to define exact Cal Requirements!

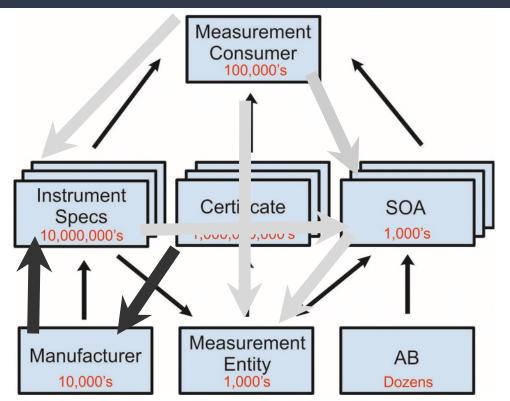


Customer can select the right / best equipment for their needs.

Customers can find a calibration lab

Specs can be used to simplify SoA uncertainties.

DCR to define exact Cal Requirements!

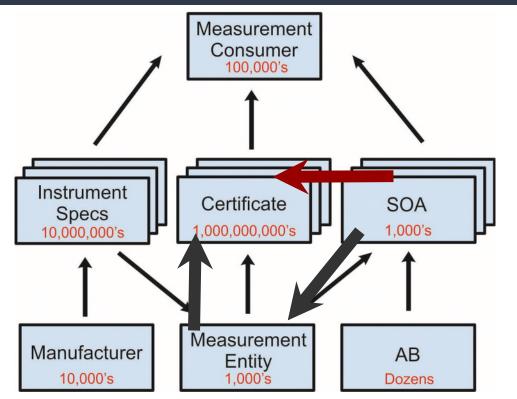


Customer can select the right / best equipment for their needs.

Customers can find a calibration lab

Specs can be used to simplify SoA uncertainties.

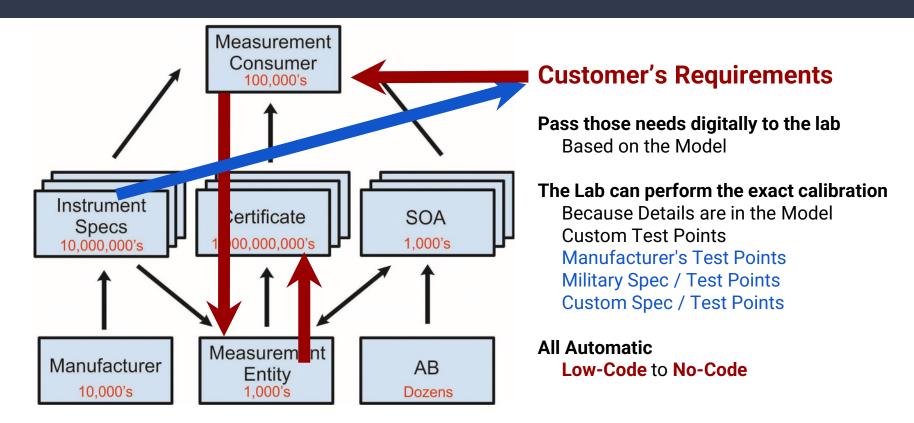
DCR to define exact Cal Requirements!

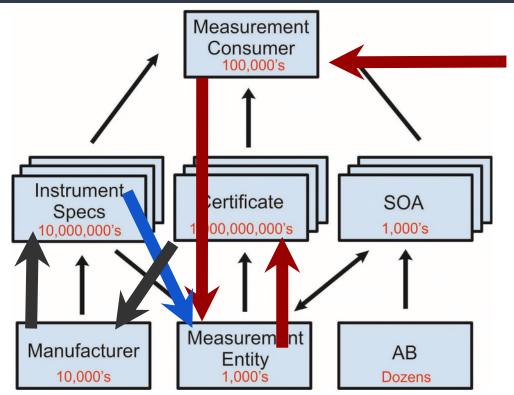


Customer can select the right / best equipment for their needs.

Customers can find a calibration lab

Specs can be used to simplify SoA uncertainties.


DCR to define exact Cal Requirements!



Automated ISO/IEC 17025 Uncertainty Verification for each and every test point

Already developed and running.

95% Confidence Calibration w/ Minimal Test Points

High Failure vs Low Failure Test Points
All Data is used to update Specs

Individual Test Points w/ Intervals

High Failure Points have shorter intervals Low Failure Test Points tested less often

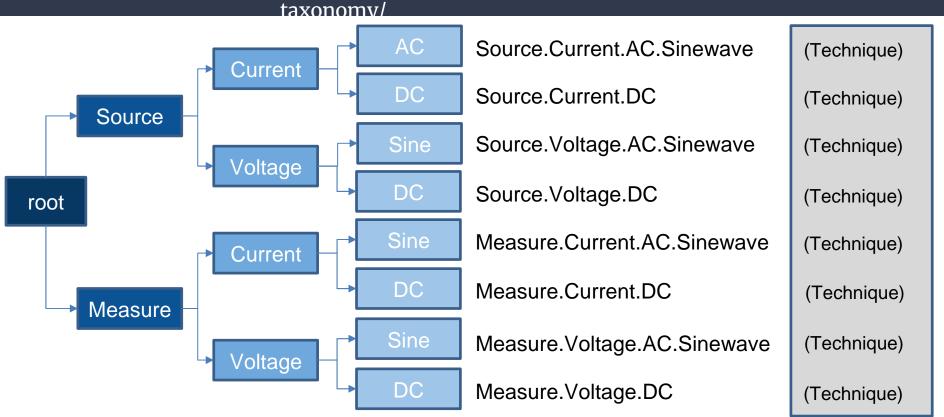
All Automatic Low-Code to No-Code

Making Sense of Chaos - For Data Exchange

Units of Measure
Not Definitive
Ontology
Needs a Domain
Artificial Intelligence
Need Structured Data

Data Format

- 30 fpm
- 1.2 g
- 10°
- XML / json
- PDF Signed



Metrology Taxonomy


https://www.metrology.net/home/metrology-

Metrology Taxonomy

Based on the natural worlds Taxonomy

Taxonomic Ranking System

Metrology Driven Software Engineering

Long Calibration Script
versus
Metrology Driven
Software Engineering

Let's assume we have 5,000 UUTs
And 6 different Calibrators

Long Calibration Script
5000 * 6 = 30,000 scripts

Model Driven Software 5000 + 6 = 5,006

- 30,000 *Avg * \$100 /hr
- 5,006 *Avg * \$100 /hr
- + 80% of software is in Support & Maint

Source.Voltage.AC.Sinewave as Metrology Taxon

https://www.metrology.net/home/metrology-

Standardized Test Definition

Volts = ??

Frequency = ??

Optional Settings

Impedance = ??

UUT.Range = ??

UUT.Input = ??

Metrology Taxonomy -> Test Point

https://www.matralagy.not/hama/matralagy_taxanamy/

```
Voltage.AC.Sinewave (Fluke 5720A)
Voltage.AC.Sinewave (Fluke 5520A)
                    (Fluke 5520A - Char)
                    (Fluke 5520A - Drift)
Voltage.AC.Sinewave (Meatest 9010)
                    (Meatest 9010 - Char)
                    (Meatest 9010 - Drift)
Voltage.AC.Sinewave (New Calibrator 1)
Voltage.AC.Sinewave (New Calibrator 2)
```

Test Point

Nominal = 10 V Upper Limit= 10.02 V Lower Limit= 9.98V Format= #0.000 Type= WithIn-Limits

Taxonomy=
Source.Voltage.AC.Signwave

Metrology Taxonomy -> Settings

https://www.motrology.not/homo/motrology_taxonomy/

```
Voltage.AC.Sinewave (Fluke 5720A)
Voltage.AC.Sinewave (Fluke 5520A)
                    (Fluke 5520A - Char)
                    (Fluke 5520A - Drift)
Voltage.AC.Sinewave (Meatest 9010)
                    (Meatest 9010 - Char)
                    (Meatest 9010 - Drift)
Voltage.AC.Sinewave (New Calibrator 1)
Voltage.AC.Sinewave (New Calibrator 2)
```

Settings

REQUIRED Parameters
Volts = 10
Frequency = 1e3

Optional Parameters
Impedance = 1e6
UUT.Input = 2 Wire Front
UUT.Range = 10

Metrology Taxonomy -> Command Script

https://www.metrology.net/home/metrology-taxonomy/

```
Voltage.AC.Sinewave (Fluke 5720A)
Voltage.AC.Sinewave (Fluke 5520A)
                    (Fluke 5520A - Char)
                    (Fluke 5520A - Drift)
Voltage.AC.Sinewave (Meatest 9010)
                    (Meatest 9010 - Char)
                    (Meatest 9010 - Drift)
Voltage.AC.Sinewave (New Calibrator 1)
Voltage.AC.Sinewave (New Calibrator 2)
```

Commands

Command Script

Reset

Setup

Measure

Output On

Output Off

Metrology Taxonomy -> Command Script

https://www.metrology.net/home/metrology-taxonomy/

```
Voltage.AC.Sinewave (Fluke 5720A)
Voltage.AC.Sinewave (Fluke 5520A)
                    (Fluke 5520A - Char)
                    (Fluke 5520A - Drift)
Voltage.AC.Sinewave (Meatest 9010)
                    (Meatest 9010 - Char)
                    (Meatest 9010 - Drift)
Voltage.AC.Sinewave (New Calibrator 1)
Voltage.AC.Sinewave (New Calibrator 2)
```

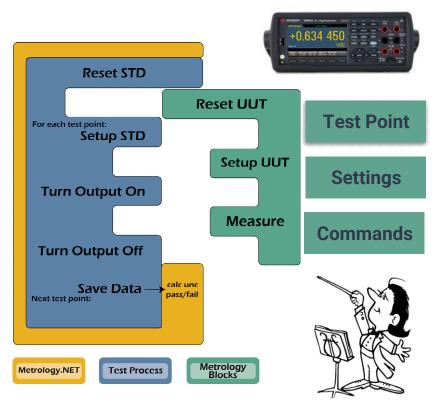
VISA Script Commands

```
*OPC?
------
Section= Setup
CONF:VOLT:AC
SENS:VOLT:AC:RANG [Range]
SENS:VOLT:AC:BAND [Filter]
*OPC?
```

Section= Reset

Section= Measure

*RST


READ?

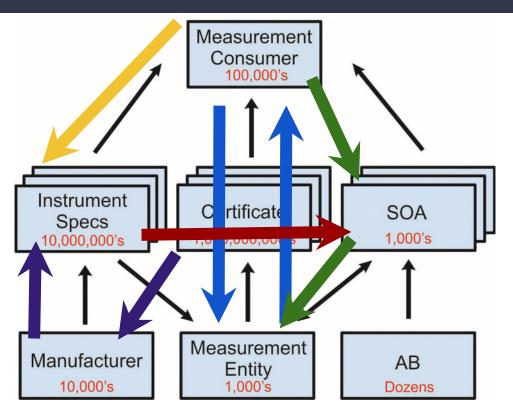
Metrology Taxonomy -> How it Works

https://www.metrology.net/home/metrology-taxonomy/

```
Voltage.AC.Sinewave (Fluke 5720A)
Voltage.AC.Sinewave (Fluke 5520A)
                    (Fluke 5520A - Char)
                     (Fluke 5520A - Drift)
Voltage.AC.Sinewave (Meatest 9010)
                    (Meatest 9010 - Char)
                     (Meatest 9010 - Drift)
Voltage.AC.Sinewave (New Calibrator 1)
Voltage.AC.Sinewave (New Calibrator 2)
```


Metrology Taxonomy -> Implementation

https://www.metrology.net/home/metrology-taxonomy/


MEATEST 9010+

Fluke 5560A

The Digitalization of Metrology will depend on Model Driven Software Engineering

DCC & DCR is about getting the customer a digital copy of their calibration data!

Customers can find a calibration lab

Calibration data can be used to update instrument specs

Customer can select the right / best equipment for their needs.

Specs can be used to simplify SoA uncertainties.

Questions

Michael L. Schwartz

Cal Lab Solutions

mschwartz@callabsolutions.com

Source.Voltage.AC.Sinewave as Metrology Taxon

https://www.metrology.net/home/metrology-

Future Proof

Standardized Test Definition

REQUIRED Settings

Volts = ??

Frequency = ??

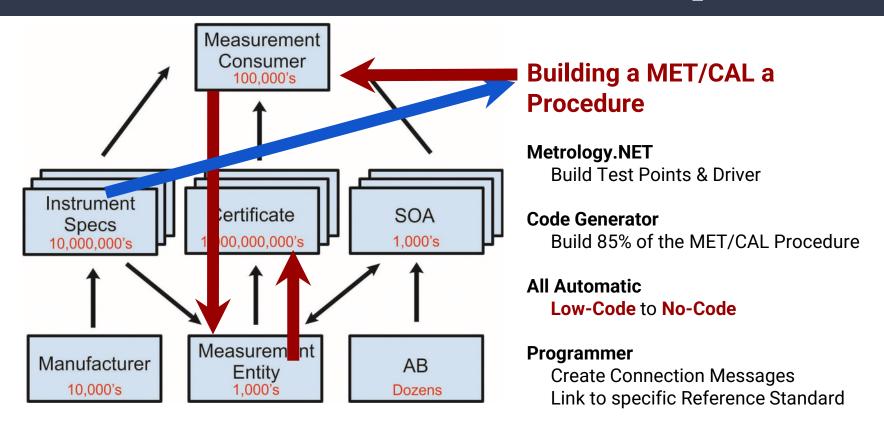
Optional Settings

Impedance = ??

UUT.Range = ??

UUT.Input = ??

MEATEST 9010+



Fluke 5560A

Model Driven Software Engineering Cal Lab Solutions MET/CAL Development

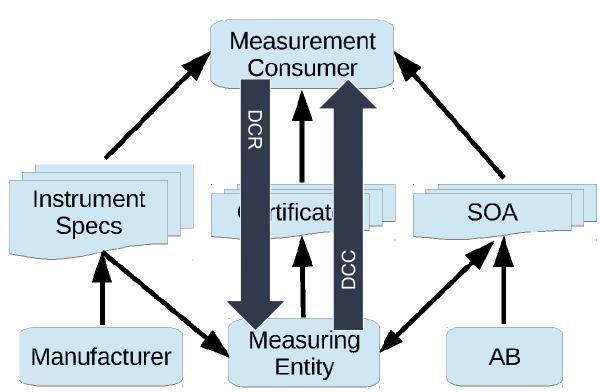
Why Metroly Driven Software Engineering?

Metrology Centric Supplier Independent Future Proof We can write **One Sheet of Music** and play it on any **musical instrument**.

So why do we write a *different scripts* for every *reference standard* to calibrate the same UUT?

The model is the center.
Write using the model
User implements the model

It's a be a better way!


Metrology Driven Software Engineering

Why change the software development model?

What are the **Advantages?**

- Writing and supporting big long calibration scripts become a thing of the past!
 - 80% of the cost is in Support & Maint
- We can move to a Low-Code or No-Code Software development model
 - Saving Time and Money!
- Models & Data are Easily Transported
 - Any Database Any Software

Metrology.NET Focused on DCR & DCC

2013 -

How to calibrate signal generators

Different Standards

HP 8902A / 8903B Stack Agilent N5531S Agilent N9030A R&S FSMR

Metrology.NET was born

Customers could define requirements Labs calibrate exact requirements Data exchange is simple

Metrology Taxonomy -> Implementation

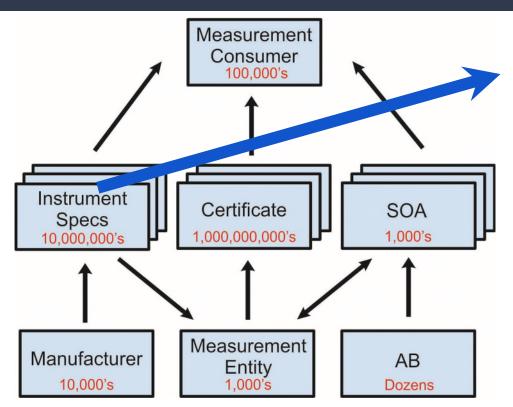
DEMO

Calibration Certificate Data Standard

- NCSLI 141 MII & Automation
- Germany & New Zealand's NMI
- Fluke Calibration
- Cal Lab Solutions
- INEGI Portugal
- Sandia New Mexico

Data Format

- 30 fpm
- 1.2 g
- 10 deg
- XML / json
- PDF Signed

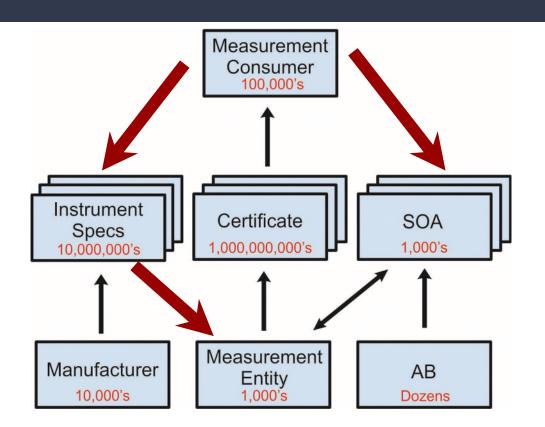


Model Driven Software Engineering

Auto Create Test Procedure

Abstract Model needed for Spec
Based on Metrology Taxonomy

Fully automated
All data driven


All Automatic

Low-Code to No-Code

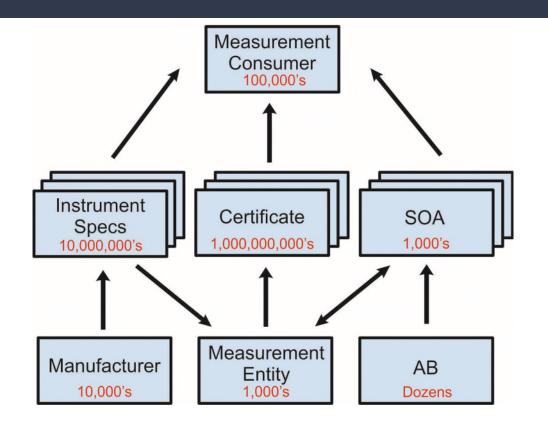
Any Language

Currently ~80% of a MET/CAL procedure is auto code gen

Model Driven Software Engineering

Data Empowerment!

Find 17025 Capable Labs


Search based on Measurement Requirements

Define Instrument Test Requirements

What needs to be tested only Saving time and Money

Easily Pass that data to the Lab

The Model contains all the test requirements

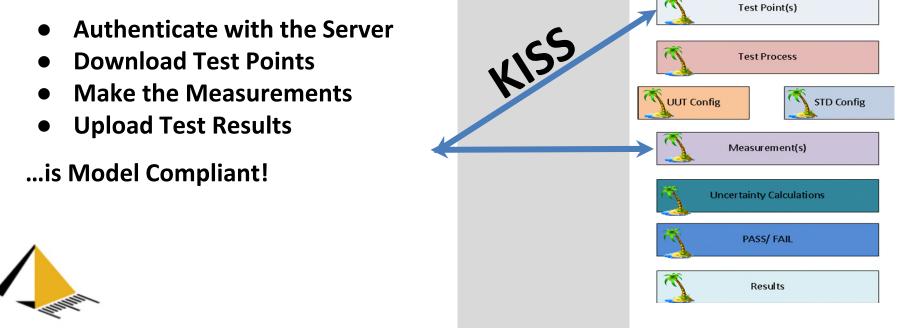
Standardized Certificates of Calibration

Measurement Entities
Create Calibration Certificates
for Measurement Customers

Equipment Specifications

Manufacturers Create Instrument Specs that Measurement Customers buy

Accredited Calibrations

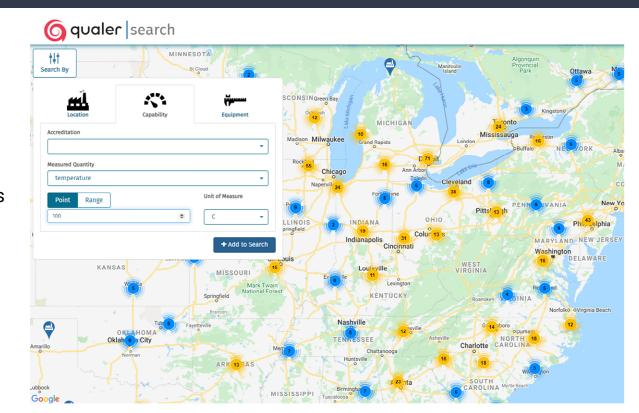

Accreditation Bodies
Create Scopes of Accreditation
that Measurement Customers view

Model Driven Software Engineering Overview

Industry

Standard

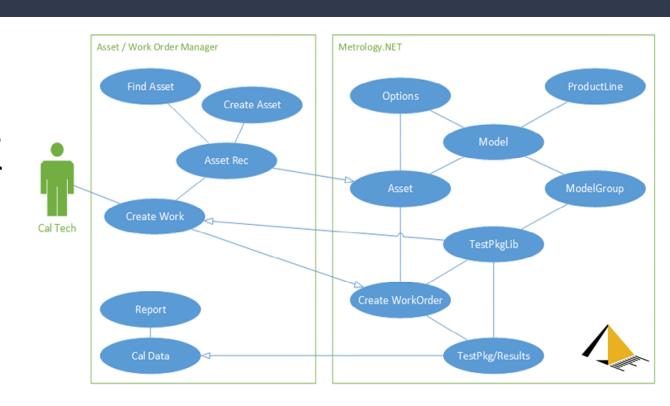
Any Software Platform that can



Qualer Search & the Search of the Future

TODAY! Search Accredited Labs Using Unit of Measure

In the Future!
Find a Calibration Lab
Based on measurement points
Check Uncertainties
Auto Calculate
Custom Pricing by test point
Send the Calibration Lab
your measurement points



Metrology.NET® Overview

Data Sync is Easy

- Find the Asset
- Select TestPackage
- Create Work Order
- Cal the UUT
- Pull Results

4 Easy / Well Defined REST Calls

